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This work proposes novel models to represent and parametrize random morphology of polycrystalline
microstructures. The reliability of high-fidelity mechanical analysis of polycrystalline microstructures
depends upon the morphological representation of the virtual model. Two models addressed in this work
are spherical growth and ellipsoidal growth tessellations in which grains grow as spheres (or ellipsoids)
with random velocities which initiate from random nucleation sites represented by a spatial point pro-
cess. All of the stochastic parameters can be represented by a marked point process random field model,
for which simulation algorithms exist. Probability distributions of the model parameters are estimated by
obtaining best-fit realizations of the models to a data set of a reconstructed microstructure specimen. The
accuracy to which these tessellation models can represent real microstructures is evaluated using two
example data sets by computing numerous microstructure features as well as the mismatch volume
between the best-fit realizations and the data. The spherical growth and ellipsoidal growth tessellations
demonstrate very significant improvements over the Voronoi tessellation, while remaining low dimen-
sional representations of the microstructure. Realizations generated from a marked point process random
field model show very good agreement in grain size, aspect ratio, and nearest neighbor distributions com-
pared to an example data set. Thus, subsequent realistic instantiations of microstructures having the
same statistical characteristics of the data can be trivially obtained, which are necessary to propagate
the uncertainty associated with morphological randomness on response quantities of interest in mechan-
ics-based applications.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction simulated is a challenging and ongoing research topic: there exists
The role that physics-based mechanics models have in identify-
ing the relationships between microstructure and properties (e.g.
[13,50]) is increasing due to advancements in experimental charac-
terization and testing, constitutive modeling, computational
resources, and simulation algorithms. In order to run high-fidelity
mechanical models of metals (e.g. CPFEM) at the microscale, the
simulation of statistically equivalent instantiations of random
polycrystalline microstructures is a necessary prerequisite. For
example, stress and strain localization, dislocation formation, and
texture evolution are known to be dependent on polycrystalline
configuration, notably crystallographic orientation and grain
boundary types and morphology (e.g. [4,25,27,30,37,38,51]).
Therefore, quantifying the uncertainty of the predicted responses
requires propagating the stochastic properties of microstructure
morphology through such models.

The ability to accurately represent material microstructure
morphology through parametrized models that can then be
a trade off between ease of simulation and complexity of the
microstructure representation. Proposed models have ranged from
purely probabilistic models that attempt to capture the statistics of
morphological features of the final microstructure to physics-
based models attempting to simulate phase transformation and
recrystallization. Examples of the range of models to represent
microstructures include spatial tessellations [35], Monte Carlo
Potts models (e.g. [1,43]), Cellular Automata models (e.g.
[36,43]), Kolmogorov–Johnson–Mehl–Avrami based approaches
(e.g. [10]), the level-set method (e.g. [24]), and phase field models
(e.g. [53]). Physics-based models have the ability to generate com-
plex morphological structures that capture features of the final and
evolving microstructure, and, more importantly, can model the
effects of material processing techniques and plastic deformation
on the final microstructure. However, the generation of
microstructures through first-principles, physics-based models
(e.g. the solution to partial differential equations formulated on
thermodynamics, diffusion, and advection processes) can be a very
challenging problem in itself. On the other hand, phenomeno-
logical models such as Cellular Automata or Monte Carlo Potts
models are easier to implement but require optimization of its
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control parameters and transformation rules to represent a target
microstructure. Purely probabilistic models (i.e. tessellations) offer
no insight into materials processing but are the cheapest computa-
tionally and easiest to implement in an optimization routine to
match target microstructure features. Thus, the choice of the type
of model depends on the application of interest.

For problems involving mechanical simulation of the final
microstructure, polycrystalline microstructures are typically mod-
eled using random tessellation models [31]. The Voronoi Tessella-
tion (VT) is the most mathematically developed and widely used
model in mechanical simulation (e.g. [2,4,5,14,23]). VTs are rather
restrictive due to their limited ability to capture variation in grain
size distribution and to represent irregularly shaped grains (e.g.
oblique and non-convex shapes). Due to the limitations of VTs, other
tessellation models have been developed (e.g. Laguerre tessellations
[20,28], Johnson–Mehl Tessellation [32], and Voronoi-G tessella-
tions [47]) although few cases involve mechanical analysis (e.g.
Laguerre tessellation [39], and the Voronoi-G tessellation [19,34]).

Instead of utilizing mathematically developed random tessella-
tion models, a number of researchers have developed optimiza-
tion-based methods to generate so-called statistically equivalent
microstructures. In these approaches, an objective function based
on the difference between statistics of features of the target and
the simulated microstructure is minimized. Example methods of
these are the algorithm in DREAM.3D software [17], the algorithms
from which the MBUILDER package is based [7,45,49], and a simi-
lar method in Ref. [52]. A general description of these methodolo-
gies is as follows. The distribution of the semi-axes of best-fit
ellipsoids to grains of a microstructure reconstructed from
experimental data (e.g. EBSD-FIB serial sectioning) is obtained.
Ellipsoids are simulated from this distribution and randomly
inserted in a spatial domain according to a uniform distribution.
The filling-in of empty spaces and removal of overlaps are typically
done through a simulating annealing optimization routine that
aims to minimize surface energy or some related cost function.
The remaining unassigned space is filled by a homogeneous
growth of the ellipsoids where their nucleation times is a function
of their volume. Then realizations of the crystallographic orienta-
tion per grain is determined such that some statistic (e.g. orienta-
tion and misorientation distribution function) obtained from EBSD
data is matched through another simulated annealing optimization
step. This is the base microstructure, and a final step can be includ-
ed to insert twins [55].

Although these methods represent the current state-of-the-art
in generating statistically equivalent polycrystalline microstruc-
tures (without resorting to physics-based approaches), there are
significant challenges and limitations. The generation of every
microstructure involves multiple optimization routines, which can
be computationally expensive, especially if multiple virtual
microstructures are sought. Furthermore, the multiple steps to
obtain the final microstructure obfuscate the relationships between
the input parameters and the final microstructure. This makes it dif-
ficult to know the range of target distributions that can be captured
and how to tune each step to improve the convergence of the opti-
mization routine. Also, it is unclear how these methods can handle
potential correlations between morphology and crystallographic
texture or spatial correlations without creating a very complex
objective function whose minimum may still result in a poor fit.

The purpose of this paper is to demonstrate that parametric tes-
sellation models can be accurate in representing microstructure
morphology and also can be easily simulated to generate statistical-
ly equivalent microstructures. The models considered are (1) a
spherical growth tessellation (also known as multiplicatively
weighted tessellation [35, Chpt. 3.1.1]) where nucleation sites are
modeled as a spatial point process and each grain grows with its
own random velocity until impinging on another grain, and (2) an
ellipsoidal growth tessellation which extends from the spherical
growth model such that grains grow as ellipsoids with random
semi-axis components and orientations. The parameters of the
models can be described by the marked point process (MPP)
[9,22,33] random field model for which simulation algorithms exist.

In general, it is a challenge to estimate the probability distribu-
tions of the parameters. In this work, parameter distributions are
obtained by identifying a best-fit realization of the models to a
reconstructed microstructure data set by minimizing the mismatch
volume between the data and the tessellation model. Thus, a limita-
tion to the approach as presented in the paper is that obtaining the
distributions of model parameters, which are then simulated to
generate statistically equivalent microstructure samples, requires
at least one data set of a reconstructed microstructure. If no
microstructure data is available and target statistics are sought,
then an inverse problem can be formulated in order to identify
the parameter distributions that lead to the target statistics. This
is the focus of numerous previous works such as the optimiza-
tion-based approaches discussed above for polycrystalline materi-
als as well as some examples for composites [15,16,26,56]. A
similar strategy can be pursued for the proposed tessellation
models although this is beyond the scope of this paper. Therefore
the contributions of this paper entail: (1) the introduction of a
method to establish best-fit tessellation samples to microstructure
data as a means to compare the accuracy of different tessellation
models (2) the introduction of the ellipsoidal growth tessellation
as a viable forward model to represent polycrystalline morphology,
and (3) the introduction of the MPP model having the marks
comprising a random vector along with a simulation algorithm to
match target marginal distributions and covariance matrices.

The paper is outlined as follows. The definitions of the Voronoi,
spherical growth, and ellipsoidal growth tessellations are given
(Section 2) followed by how best-fit realizations of such models
are obtained from a reconstructed microstructure (Sections 3 and
4) with two examples provided (Section 5). A suitable random field
model and simulation algorithm for the one of the example data sets
is given in Section 6, which is followed by concluding statements.

2. Microstructure representation with tessellation models

A tessellation m ¼ fCjg is a collection of cells

Cj � Rd : j ¼ 1;2; . . . ;NC defined as [31]

C�j

\
C�k ¼ /; ð1aÞ[

j

Cj ¼ Rd; ð1bÞ

#fCj 2 m : Cj \ B – /g <1 for all bounded B � Rd; ð1cÞ

where Eq. (1a) states that the interior of cells ðC�Þ do not intersect, Eq.
(1b) states the tessellation is spacefilling (i.e. no empty spaces), and
Eq. (1c) states that a tessellation is a countable set of cells. Polycrys-
talline microstructure morphology satisfies the definition of a tessel-
lation for x 2 R3 (e.g. the grains are represented by tessellation cells),
and a few models with varying complexity are discussed below.

A 3D Voronoi Tessellation (VT) is defined such that every point
in space is assigned to the cell with the nearest nucleation site, and
is given by

Cj ¼ x 2 R3 : kx� Xjk 6 kx� Xkk; j – k
� �

; ð2Þ

for Xj being the nucleation site of Cj. VTs are the simplest, and most
widely utilized, tessellation models as they are parametrized only
by the nucleation sites Xj, which can be modeled by a spatial point
process, of which the Poisson process is most commonly employed.
Detailed treatment of VTs can be found in Refs. [3,54]. Drawbacks to
VTs are that the cells are limited to convex polyhedra in R3 (i.e.



Fig. 1. Grain boundaries of reconstructed data in red and a VT in blue. The dark
colored hatched region is the mismatch volume to be minimized. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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planar boundaries), and that the distributions of size and aspect ratios
of the cells are significantly narrower than that observed in many
polycrystalline materials. There are a vast number of VT variants
which have been developed (e.g. multiplicatively weighted, k-order
VTs, weighted VTs, additively weighted VTs, the Voronoi-G tessella-
tion, etc.) [35], though only a few have been used in mechanics.

Beyond the VT, two additional tessellation models for polycrys-
talline representation are considered in this work. The first is the
multiplicatively weighted VT [35, Chpt 3.1.1], which is a spherical
growth model, abbreviated as SGT, and the second is an extension
of the multiplicatively weighted VT, which is an ellipsoidal growth
model, denoted as EGT. The SGT and EGT models are defined as

Cj ¼ x 2 R3 : TjðxÞ 6 TkðxÞ;8j – k; s:t: Cj is simply connected
� �

:

ð3Þ

The cell travel time TjðxÞ is the time it takes Cj to grow to x from its
nucleation site Xj. For the SGT, TjðxÞ ¼ kx� Xjk=v j for v j being the
velocity of the growing cell, whereas TjðxÞ ¼ kx� Xjk=v jðh;/Þ for
the EGT. The angles ðh;/Þ are angles of a spherical coordinate sys-
tem with respect to a local cartesian coordinate system per cell
defining the ellipsoid semi-axes parameterized by Bunge–Euler
angles h ¼ ðu01;U

0;u02Þ. The cell velocity for the EGT is parametrized
by the three axial directions of the ellipsoid ðv j1 ; v j2 ;v j3 Þ and the cell
velocity in terms of h;/ (dropping the subscript j) is

vðh;/Þ¼ v1v2v3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

2v2
3 sin2ð/Þcos2ðhÞþv2

1v2
3 sin2ð/Þsin2ðhÞþv2

1v2
2 cos2ð/Þ

q :

ð4Þ

The models must also capture the crystallographic orientation
per grain, which is parametrized by the Bunge–Euler angles
g ¼ u1;U;u2ð Þ. Thus, in summary: for each cell, the VT model is
parametrized by Xj; gj

� �
, the SGT model is parametrized by

Xj;v j; gj

� �
, and the EGT model is parametrized by

Xj;v j1 ;v j2 ;v j3 ;hj; gj

� �
for j ¼ 1;2; . . . ;NC , for NC being the total

number of grains. Modeling and simulating the parameters via
an MPP random field model is addressed in Section 6. Prior to
simulation, the parameter distributions are estimated by obtaining
a best-fit realization of the tessellation models from 3D data, which
leads to a comparison of tessellation model performance as dis-
cussed in the following sections.

3. Best-fit tessellation model to data

3D data sets of reconstructed microstructures obtained from
experimental data collection techniques (e.g. EBSD-FIB serial sec-
tioning) are slowly becoming more available [6]. These are very
expensive and time consuming data sets to create, and virtual
models from which so-called statistically equivalent microstruc-
tures are greatly motivated to study different instantiations of
microstructure configurations. The intuitive approach to fit the tes-
sellation models to data is to set the grain centroids as the nucle-
ation sites and fit spheres and ellipsoids to the grains for the SGT
and EGT models, respectively. For the SGT model, the realization
of each grain velocity is estimated as v j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vj=ð4pÞ3

p
, for Vj being

the grain volume. The best-fit ellipsoidal velocities and orientation
per grain for the EGT model is obtained by equating the eigenval-
ues and eigenvectors of the grain’s moment of inertia tensor to that
of an ellipsoid. For example, the moment of inertia about the x1-ax-
is per grain with centroid �xj occupying Nj voxels with edge length D

is computed as Ix1x1 ¼
PNj

n¼1 x2n � �x2j

� �2
þ x3n � �x3j

� �2
� �

D3
� �

þNjD
4=12, and the cross term with respect to the x2-axis computed

as Ix1x2 ¼ �
PNj

n¼1ðx1n � �x1j
Þðx2n � �x2j

ÞD3. The eigenvectors of this
tensor form the local axis of the growing ellipsoid from which

parameters hj ¼ u01j
;U0j;u02j

� �
are determined. The velocity compo-

nents are determined by equating the eigenvalues I1j
; I2j

; I3j
to the

moment of inertia terms of an ellipsoid and solving for the semi-

axes components, for example v1j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:5ðI2j

þ I3j
� I1j
Þ=Vj

q
. This

approach for computing best-fit ellipsoids have been used in Refs.
[7,17,44] and the only distinction here is that the velocity compo-
nents of growing ellipsoids are determined rather than the semi-
axes of ellipsoids.

These estimates of the best-fit parameters can be verified by
minimizing the difference in grain boundary mismatch between
the tessellation model and the data. Fig. 1 shows grain boundaries
of the data in red and a VT in blue, and the hatched dark colored
region is the mismatch volume per grain to be minimized.

The grain boundaries for the tessellation models are defined as
the locations where growing neighboring grains first come in con-
tact, and are found by equating the time that it takes neighboring
grains to reach the boundary, that is

TjðxÞ ¼ TkðxÞ for x 2 Cj \ Ck: ð5Þ

Denote the set of boundary nodes intersecting grains Cj and Ck

as ðkÞBðjÞ for the microstructure data set. The travel time for grain Cj

to reach boundary node ðkÞBðjÞn for the VT model is k
ðkÞBðjÞn �Xjk

v , since the
cells are convex. Note that the VT model can be viewed as a growth
model where all grains grow with identical velocity v. Thus for a

given grain boundary node ðkÞBðjÞn , a measure of mismatch between
the VT model and reconstructed microstructure is given as

f ¼ kðkÞBðjÞn � Xjk � kðkÞBðjÞn � Xkk: ð6Þ

For the SGT and EGT model, the travel time argument is applied
to develop a similar measure of grain mismatch. For the SGT mod-
el, this measure is given as

f ¼ djkv j

v j cosðbjn
Þ þ vk cosðbkn

Þ � djn ; ð7Þ

for djk ¼ kXj � Xkk; djn ¼ kXj � ðkÞBðjÞn k, and bjn
; bkn

being the angle
between ðXj � XkÞ and the line segments connecting Xj and Xk to
ðkÞBðjÞn , respectively. Since the cells of the SGT and EGT models are
not convex, the grain boundaries are not obtained by a linear travel
path from the nucleation sites, and Eq. (7) is solved in an averaged
sense. An objective function is obtained by squaring Eq. (7), averag-
ing per grain boundary, and summing over all grain boundaries as
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f ¼ 1
ðkÞNðjÞB

XNC

j¼1

XNðjÞN

k¼1

XðkÞNðjÞB

n¼1

djkv j

v j cosðbjn
Þ þ vk cosðbkn

Þ � djn

 !2

; ð8Þ

for ðkÞNðjÞB being the number of boundary nodes shared by grains Cj

and Ck; NðjÞN being the number of neighbors of grain j. An equivalent
objective function can be obtained for the EGT model by replacing
v j with vðh;/Þj (see Eq. (4)). Such an optimization can be very
expensive if the data set contains many grains. However, it is uti-
lized in the example in Section 5.1 to verify that the estimated para-
meters of the SGT model give results nearly identical to the best
attainable realization through Eq. (8).

4. Sample generation of growth models

For a given realization of parameters for a tessellation model,
the associated sample virtual microstructure is generated in the
following three steps. This procedure is preferred to growing the
grains in the time domain because of the ease to which this process
can be parallelized.

1. Voxel assignment to grains: The domain is voxelated and each
voxel is assigned to the grain that takes the least time to reach
the centroid, x̂, of the voxel without interruption, that is

min
j
kXj � x̂k=vðh;/Þj
h i

for the EGT model and dropping the

h;/ dependence of grain velocity for the SGT model.
2. Ensure that every grain is simply connected: Since the voxel

assignment in step 1 does not consider the intersection of grow-
ing grains, erroneous disconnected grain sets arise. The set of
Fig. 2. Reconstructed microstructure of IN100 Nickel superalloy data set along with best
realization, (c) best-fit SGT realization and (d) best-fit VT realization.
simply connected grain voxels is obtained by first identifying
the voxel containing the nucleation site of a grain and then
iteratively identifying neighboring voxels that are assigned to
the same grain. After no new voxels are identified, the discon-
nected voxels are the voxels assigned to the grain that have
not been identified. These voxels are assigned to grains as per
step 1 where all grains except grains previously assigned to
the voxels compete. This process is repeated until all grains
are simply connected.

3. Eliminate grains that are completely enclosed by another grain:
The number of neighbors of each grain is counted. Grains that
have one neighbor are eliminated and their voxels are reas-
signed to its neighbor.

Step 1 is equivalent to a point membership query with the pre-
dicate being a logical statement returning true for the grain reach-
ing x̂ first [48], while steps 2 and 3 are common operations in
computer graphics to identify connected components and to fill
voided volumes, respectively [21]. A sample microstructure of
the EGT model consisting of ½189� 201� 117� voxels and 2353
grains takes approximately 8 min on a 1:7 GHz Intel Core i7 pro-
cessor running a serial Fortran90 code, while the corresponding
SGT model takes approximately 2 min.

5. Examples

5.1. 3D reconstructed nickel superalloy IN100

An Example 3D microstructure data set of a Nickel IN100 super-
alloy is freely available through the DREAM.3D open source
-fit realizations of tessellation models: (a) IN100 reconstructed data, (b) best-fit EGT
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software [18]. DREAM.3D facilitates the processing of digital
microstructural data obtained from experimental data collection
techniques (e.g. EBSD) by providing a large array of algorithms for
segmenting, filtering, and quantifying microstructure features
through a user-friendly interface. The example data set utilized is
obtained using the default settings to reconstruct the IN100 sample
and an image of it is shown in Fig. 2(a) alongside the best-fit
reconstructed microstructures using the EGT (Fig. 2(b)), SGT
(Fig. 2(c)), and VT (Fig. 2(d)) models. The voxel-based reconstructed
microstructure data set consists of 2353 grains and is of size
½189� 201� 117� with voxel edge length of :25 lm. The best-fit
SGT and EGT models are obtained by finding equivalent spheres
and ellipsoids as discussed in the beginning of Section 3, and the
best-fit VT model is obtained by placing the nucleation sites at the
centroids. By visually examining the morphology of the exposed
grains in Fig. 2, it can be observed that the fit of the VT model is
not very good, while the SGT and EGT models are significantly
better. Quantitative measures of comparison are given below.

In order to check the accuracy of the best-fit SGT approximation
in Section 3, the SGT model parameters are optimized according
to Eq. (8) using the Trust-Region algorithm [8] as implemented
in MATLAB’s FMINCON function, which is a gradient based
optimization algorithm. The convergence of the optimization
shown in Fig. 3, where the initial guess of the parameters corre-
sponds to the best-fit approximation, took about 10 h on 1:7 GHz
Intel Core i7 running serial MATLAB code. A negligible reduction
in the objective function can be observed. One performance
measure is the percent of mismatching voxels between the
tessellations and the data (i.e. inconsistency of voxel assignment).
The optimized SGT model has 17:5% inconsistency while the
equivalent sphere SGT model has 17:59% inconsistency. This is
compared to the EGT model with 9:99% inconsistency and the
VT model having 51:15% inconsistency. Thus as the complexity
of the models increase the performance increases significantly; it
is worth emphasizing here the very large errors of the VT model.
5.2. Comparison of feature statistics

The performance of the tessellation models is assessed by graphi-
cal comparisons of empirically obtained probability distributions of
microstructure features. The most commonly considered feature is
grain size distribution, which is shown in Fig. 4. The SGT and EGT
each perform well and do an excellent job in capturing the PDF for
grain volumes greater than about 10 lm3. Small grains are captured
but the distribution of very small grains (< 10 lm3) is slightly
underrepresented. On the other hand, these tessellation models
demonstrate an extremely significant improvement over the VT
model, which severely misses both tails of the distribution (small
grain and large grains) as well as the general shape.

Fig. 5 shows the distribution of number of neighbors per grain.
This metric can be seen qualitatively as a low order metric regard-
ing the boundary structure. The EGT model performs the best in
capturing the shape of the probability mass function (PMF), while
the SGT model overestimates the PMF for small number of
neighbors. It can be seen graphically that the VT model appears
to neither capture the mean or the variance of the PMF and it
has a significantly different shape.

A metric for grain aspect ratio is typically obtained by finding
the best-fit ellipsoid per grain and comparing the ratios of the 3
axes (A P B P C) of the ellipsoid. The best fit ellipsoid is obtained
as discussed in Section 3. Empirical PDFs of A

B and A
C for the data and

tessellation models are shown in Fig. 6(a) and (b), respectively. The
EGT model shows significant improvement over the SGT and VT
models in capturing the grain aspect ratio, while in this case VT
outperforms SGT.

The distribution of the grain volume mismatch (i.e. volume
of incorrectly assigned voxels) for all grains is given in Fig. 7.
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A perfectly fitting model would have PDF equal to dðxÞ. The mis-
match error between the SGT and EGT models are similar and
are both much better than the VT model.

The Grain Boundary Character Distribution (GBCD), kðn;DgÞ,
introduced in Ref. [42], is a quantitative measure of grain boundary
types, and is defined as the relative area of boundaries as a function
of surface normals with respect to crystallographic orientation of
the grain n and the crystallographic misorientation Dg between
the neighboring grains. Properties of the GBCD and methods to
compute it are discussed in Refs. [42,44,46], and a GBCD analysis
of the IN100 data set has been given in Ref. [41]. GBCDs for the data
as well as the tessellation models were created through both the
DREAM.3D software and the software provided in Ref. [40].
Voxel-based representations of the microstructures were input
into DREAM.3D, and the grain boundaries were surface-meshed
after undergoing a Laplacian smoothing process [11]. The surface
mesh data (i.e. element area, normal direction, crystallographic
0�;1:0� ;1:0�;60:0�Þ in axis-angle notation with units in MRD. The ½1 10� direction is
mals relative to the local crystallographic orientations: (a) Data, (b) EGT, (c) SGT and

� ;1:0�;1:0� ;5:0�Þ in axis-angle notation with units given in MRD. The ½11 0� direction
normals relative to the local crystallographic orientations: (a) Data, (b) EGT, (c) SGT



(a) (b)

Fig. 10. EBSD micrograph of rolled aluminum alloy and its grain boundaries highlighted. Image courtesy of Dr. Dave Furrer of Pratt & Whitney: (a) EBSD micrograph and (b)
grain boundary traces.
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orientation of its adjacent neighbors) were outputted to create and
visualize the GBCD from Ref. [40].

The GBCD is difficult to visualize because it is a function of 5
parameters so two snapshots are given. The stereographic projec-
tion on the ½001� direction for the data and the tessellation models
(a)

(c)

Fig. 11. Images of the rolled aluminum alloy along with best-fi
for misorientation 1:0�;1:0�;1:0�;60:0�ð Þ using the axis-angle nota-
tion [12] is given in Fig. 8, and for misorientation
1:0�;1:0�;1:0�;5:0�ð Þ is given in Fig. 9. The Miller indices of the

stereographic projection correspond to the direction of the grain
boundary normals relative to the local crystallographic orientation.
(b)

(d)

t tessellation models: (a) Data, (b) EGT, (c) SGT and (d) VT.
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Fig. 12. Empirical PDF of the grain size and aspect ratio of the best-fit ellipse for the data and tessellation models in Fig. 11: (a) empirical PDF of grain size (mm2) and (b)
empirical PDF of best-fit ellipse aspect ratio.
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The units of the GBCD are given in multiples of a random distribu-
tion (MRD), meaning that the GBCD is normalized with respect to
that of a uniformly random distribution of internal grain surfaces
[42]. Therefore, values greater than 1 imply a higher probability to
occur than uniformly random and values less than 1 are less
likely to occur. The large anisotropy of the GBCD in Fig. 8 illustrates
the high density of R3 boundaries which corresponds to coherent
twins. The EGT model is much better at capturing this boundary
type than the other models. Fig. 9 shows a small-angle grain
boundary (i.e. R1 boundary) that is closer to being uniformly
random. Here, the models have values near that of the data but fail
to capture the small fluctuations, as to be expected. A measure of the
relative error is obtained by taking the ‘2-norm of the difference of
the model GBCD with the data divided by the ‘2 norm of the data
GBCD, and is given as :18; :53, and :48 for the EGT, SGT, and VT
models, respectively. Note that for the tessellation models, the
crystallographic orientation per grain is taken to be exactly that of
the data; thus, discrepancies are due solely to morphological
discrepancies. It is not expected that the GBCDs of the data and
the models exactly match because that would indicate a perfect fit
of the grain boundary morphology, but the results further
demonstrate the significant improvement of the EGT model over
the SGT and VT models.

5.3. 2D image of rolled aluminum alloy

This example demonstrates the extent to which the ellipsoidal
growth model can capture oblique grains, such as those formed
from hot rolling. An EBSD micrograph of a rolled aluminum alloy
along with an image highlighting the grain borders, obtained from
manual tracing of the image, is shown in Fig. 10.

Fig. 11 shows the best-fit realization of the tessellation models
along with an image of the data plotted to the same scale. It can be
observed that the EGT model captures the morphology fairly well
while the SGT and VT models produce very poor results. Fig. 12
shows PDFs of the grain size and aspect ratio corroborating this
observation.

6. Stochastic simulation of the EGT model for the 3D IN100
nickel alloy

This section describes the random field model chosen to simu-
late the EGT model according to the statistics obtained from the
best-fit realization of the IN100 data set. The parameters of the
EGT model conform to the MPP random field model [9,22,33]. An
MPP is given as
Y ¼ ðn;mnÞ : n 2 N;mn 2 Mf g; ð9Þ

for n 2 R3 being a point in point process N having associated mark
(also known as intensity) mn in sample space M. Detailed mathema-
tical treatment and definitions of statistical measures can be found
in [9, Chpt. 4]. The tessellation models studied have an additional
complexity to traditional MPPs in that the marks are random vec-
tors rather than scalar valued. In this context, n represents the loca-
tions of grain nucleation sites in the microstructure, and mn are the
grain parameters. For example, the EGT model marks are 9 dimen-
sional random vectors given as

mn ¼ v1;v2;v3; u01;U
0;u02

	 

; u1;U;u2ð Þ

� �
; ð10Þ

where ðv1; v2;v3Þ are the three velocity components of the growing
ellipsoid, ðu01;U

0;u02Þ are the Euler angles of the ellipsoid orienta-
tion, and ðu1;U;u2Þ are the Euler angles of the crystallographic ori-
entation per grain.

There is no spatial dependence of the nucleation sites as well as
dependence among the mark vectors for the IN100 example data
set. This was determined by computing a covariance equal to zero
among the mark vector components across grains, and complete
spatial randomness of the nucleation sites as determined by the
L-test [9, Chpt. 2.6]. However, there is dependence among the com-
ponents within each mark vector and is addressed below. The hard
core Matern process, which is an extension of the Poisson process
such that no points are within a distance r of each other, is utilized
to represent the nucleation sites. A mathematical description and
simulation algorithm for the hard core Matern process is found
in [9, Chpt 5.4]. The threshold minimum distance is due to the
finite size of grains and the value r ¼ :3 is used in the simulation.
The homogeneous density of nucleation sites is estimated to be
k ¼ NC

jW j ¼ 2353
29:5�47:25�50:25 ¼ :0339. Had spatial correlation of the nucle-

ation sites been observed, the interaction among the points can be
modeled through the Markov point process class of models [33,
Chpt. 6] and simulated through Markov Chain Monte Carlo
methods.

Since the grain velocities are directly proportional to grain size,
the distribution of the marks are dependent on the nucleation sites.
The approach taken to simulate the MPP is to factor the joint dis-
tribution into the marginal distribution of the point process and
the distribution of the marks conditioned on the point process, that
is

f ðn;mnÞ ¼ f ðmnjnÞf ðnÞ: ð11Þ

The point process is simulated first followed by the conditional dis-
tributions of the marks. There is significant flexibility in how to



(a)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Best−fit ellipsoidal ratio (A/B)

P
ro

ba
bi

lit
y 

de
ns

ity

Data
EGT BF
EGT Sim

(b)

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Best−fit ellipsoidal ratio (A/C)

P
ro

ba
bi

lit
y 

de
ns

ity

Data
EGT BF
EGT Sim

(c)

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0.12

number of neighbors

Data
EGT BF
EGT Sim

P
ro

ba
bi

lit
y

m
as

s

(d) (e)

Fig. 13. Empirical PDFs morphological features and image of simulated EGT model: (a) grain size (lm3) PDF, (b) best-fit ellipsoid ratio A
B PDF, (c) best-fit ellipsoid ratio A

C PDF,
(d) number of neighbors per grain PMF and (e) realization of EGT model.
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establish the conditional distributions of the marks from the best-fit
tessellation sample. The approach taken is to divide the mark data
into Ng groups, which are grouped according to the average distance
of the closest Nn nucleation sites for a given mark. The group
boundaries are determined such that all the groups have the same
amount of data. For this example Ng ¼ 5 is chosen because it is
the largest number of groups to obtain sufficiently resolved empiri-
cal PDFs given the limited amount of data, and Nn ¼ 5 because it is
heuristically determined to sufficiently identify the dependence of
the marks on the nucleation site configuration.

The vector (intra-grain) components of the marks exhibit statis-
tical dependence. The velocity components per grain are strongly
correlated with an average correlation coefficient of :85. A negative
correlation is observed between the Euler angles U0 and u02 of the
ellipsoid orientation having a correlation coefficient of �:6. All
other parameter pairs have correlation coefficient smaller than
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:1. The simulation of the mark components is done such that the
marginal conditional distributions and associated correlation
matrices obtained from data are matched. This is done by utilizing
the Nataf transform and directly mapping the covariance matrix of
the underlying multivariate Gaussian distribution R0jk

to the
Spearman’s rho of the marks through the analytical expression
found in Ref. [29], details of which are given in Appendix A. This
approach is also capable of capturing correlation of mark vector
components across grains if it had been observed, and it has been
implemented for simulating the three Euler angles defining
crystallographic orientation in Ref. [34].

In order to test the accuracy of this form of the Nataf transform,
100,000 samples of the mark vector were generated for which
empirical PDFs and covariance matrices were generated for each
of the 5 conditional joint distributions (i.e. 45 marginal distribu-
tions and 5 9� 9 covariance matrices). The difference between
the target and simulated correlation matrix, Rj;k, for relative error

metric given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j;kðR
sim
j;k � Rtarget

j;k Þ
2
=
P

j;kðR
target
j;k Þ2

q
varies between

:02 and :05. The marginal distributions obtained from simulation
are essentially identical with those of the target, as to be expected.
The error of the marginal PDFs of the mark vectors, f ðxÞ, ranged
from :0013 to :0125 for the relative error metric given asR ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf simðxÞ � f targetðxÞÞ

2
q

dx=
R

f targetðxÞdx.

Since simulating the hard core Matern process as well as ran-
dom variables consistent with target marginal distributions and
covariance matrices involve no optimization, sample realizations
of the tessellation parameters can be generated almost instanta-
neously. The results of the generated microstructure samples are
given below. Fig. 13 contains a realization (Fig. 13(e)) along with
the grain size distribution (Fig. 13(a)), grain aspect ratios
(Fig. 13(b) and (c)), and number of neighbors (Fig. 13(d)) compared
with the best fit EGT and the data. In order to minimize sampling
error, the densities in Fig. 13 were determined from 5 simulated
microstructures each containing between 2400–3000 grains, and
any incremental change in the empirical PDFs by generating new
samples is negligible. There remain slight discrepancies between
the distribution obtained from the best-fit realization and the
simulations, such as under prediction of the probability of small
grains and over prediction of grain sizes. The sources of these dis-
crepancies, although difficult to quantify, are likely to be from sim-
plifications in the random field model representation, parameter
errors of the random field model due to limited data, and limita-
tions of the simulation algorithm. Also, since the upper tail is asso-
ciated with very low probabilities, it is likely that there is sampling
error from the data set since only one microstructure sample is
available. Overall, the results show that the microstructure fea-
tures are captured very well by the simulation.
7. Conclusions

This work was motivated by the need for an accurate and effi-
cient approach to simulate numerous instantiations of statistically
equivalent polycrystalline microstructures. The methodology pre-
sented in this paper covers both the estimation of tessellation
model parameters and the simulation of these parameters given
a sample data set of a reconstructed microstructure. Through two
examples, the ellipsoidal growth tessellation model was demon-
strated to be accurate in capturing morphology features while hav-
ing efficiency comparable to simple tessellation models (i.e.
Voronoi tessellations). The marked point process is the proposed
random field model to represent the tessellation parameters,
which can be efficiently simulated using existing point process
models conjoined with the Nataf transform for the marks.
Under the condition that a reconstructed microstructure data
set is available, the approach proposed in this paper makes some
significant contributions to the current state-of-the-art. It provides
a quantitative means to evaluate the accuracy of a tessellation
model by determining the best-fit sample to the data set (i.e. Sec-
tion 3), and consequentially permits a performance comparison
among competing models. The generation of statistically equiva-
lent microstructures resorts to simulating the tessellation model
parameters consistent with their statistics. The parsing of the para-
meters into a point process and multivariate distributions condi-
tioned on the point process results in a tractable random field
model to simulate. Accurately simulating the parameters ensures
capturing the microstructure features of the best-fit sample. There-
fore, the ability to capture more complicated correlations than that
observed in the example data sets is promising, and this approach
is likely to be better suited than optimizing a nonparametric model
to match target distributions of microstructure features. Further-
more, this work introduces and demonstrates the reliability of a
forward model to represent polycrystalline morphology, that being
the ellipsoidal growth tessellation model. The value in having a for-
ward model is that its parameters can be assigned arbitrary ran-
dom field models in order to simulate hypothetical
microstructures very rapidly, which could eventually become a
useful tool in materials design. It is remarked that extensions to
the model, such as inclusion of twins or multiphase subgrain mor-
phology, remain to be implemented.

Ultimately, the performance of the tessellation models must be
assessed by comparing the predicted mechanical response based
on the virtual model and the 3D reconstructed data. Quantifying
the uncertainty of micromechanical analysis requires quantifying
discrepancies in predicted response between virtual models and
reconstructed data as well as the variability in predicted response
based on generating multiple realizations of microstructure mor-
phology. The approach developed in this paper is a step towards
improving the reliability of such predictions.
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Appendix A

The Nataf transform is a composition of two transformations
that map a random vector M with known marginal cumulative dis-
tribution functions (CDF) Fj and correlation matrix Rjk to a vector U
comprised of independent standard normal random variables as
U ¼ T2 � T1ðMÞ where

T1 : M ! Z ¼

U�1ðF1ðM1ÞÞ
U�1ðF2ðM2ÞÞ

..

.

U�1ðFNðMNÞÞ

0
BBBBB@

1
CCCCCA and T2 : Z ! U ¼ CZ; ðA:1Þ

where Z is a multivariate normal distribution with standard normal
marginals and having covariance matrix R0jk

, and C is a square root

of R�1
0 typically obtained through the Cholesky factorization. The

relationship between Rjk and R0jk
is
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Rjk ¼
1

rjrk

Z Z
R2
ðF�1

j UðzjÞ � ljÞðF
�1
k UðzkÞ � lkÞ

�/ðzj; zk;R0jk
Þdzjdzk; ðA:2Þ

for lj being the mean value of Mj. Eq. (A.2) has no analytical solu-
tion and thus must be solved through optimization. However, an
analytical expression relating the underlying covariance matrix R0

and the Spearman’s rho qs of the target distribution exists and is
given as

R0jk
¼ 2 sin

p
6

qsðMj;MkÞ
� �

: ðA:3Þ

Through the analytical relationship of Eq. (A.3) the marks M can be
simulated given that the underlying covariance matrix R0 is positive
definite (i.e. every marginal distribution and correlation structure
cannot be captured by an underlying multivariate Gaussian, and it
is necessary that R0 is positive definite for such a mapping to exist).
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