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Statistically equivalent representative volume elements or SERVEs are representations of
the microstructure that are used for micromechanical simulations to generate homo-
genized material constitutive responses and properties (Swaminathan et al., 2006a;
Ghosh, 2011). Typically, a SERVE is generated from the parent microstructure as a sta-
tistically equivalent region, whose size is determined from the requirements of con-
vergence of macroscopic properties. Standard boundary conditions, such as affine trans-
formation-based displacement boundary conditions (ATDBCs), uniform traction boundary
conditions (UTBCs) or periodic boundary conditions (PBCs) are conventionally applied on
the SERVE boundary for micromechanical simulations. However, when the microstructure
is characterized by arbitrary, nonuniform distributions of heterogeneities, these simple
boundary conditions do not represent the effect of regions exterior to the SERVE. Im-
proper boundary conditions can result in significantly larger than optimal SERVE domains,
needed for converged properties. In an attempt to overcome the limitations of the con-
ventional boundary conditions on the SERVE, this paper explores the effect of boundary
conditions that incorporate the statistics of the exterior region on the SERVE of elastic
composites. Using Green's function based interaction kernels, coupled with statistical
functions of the microstructural characteristics like one-point and two-point correlation
functions, a novel exterior statistics-based boundary condition or ESBC is derived for the
SERVE. The advantages of the ESBC are established by comparing with results of simu-
lations using conventional boundary conditions. Results of the SERVE simulations sub-
jected to ESBCs are also compared with those from other popular methods like statistical
volume element (SVE) and weighted statistical volume element (WSVE). The proposed
ESBCs offer significant advantages over other methods in the SERVE-based analysis of
heterogeneous materials.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials have gained wide commercial acceptance due to their superior effective thermal and mechanical
properties. These properties depend not only on properties of individual constituents but also on the local microstructural
morphology like fiber volume fraction, inclusion size and shape, and spatial dispersion of fibers. Effective properties are

* Corresponding author.

E-mail address: sghosh20@jhu.edu (S. Ghosh).

! M. G. Callas Chair Professor.
2 Assistant Research Professor.

http://dx.doi.org/10.1016/j.jmps.2016.05.022
0022-5096/© 2016 Elsevier Ltd. All rights reserved.



2 S. Ghosh, D.V. Kubair / J. Mech. Phys. Solids 95 (2016) 1-24

Nomenclature boundary condition
UTBC  uniform traction boundary condition
RVE representative volume element PBC periodic boundary condition
SERVE statistically equivalent representative volume SIGF  statistically informed Green's function
element SVE statistical volume elements
ESBC  exterior statistics-based boundary condition WSVE  weighted statistical volume element
ATDBC affine transformation-based displacement MVE  microstructural volume element

evaluated by methods of homogenization or averaging of microscopic variables like stresses and strains, with various as-
sumptions on the representative microstructural domain. A number of analytical models have evolved within the frame-
work of small deformation elasticity theory (Eshelby, 1957; Benvensite, 1987; Hill, 1965; Hashin and Shtrikman, 1963;
Hashin, 1983; Mura, 1987) to predict homogenized macroscale constitutive response of heterogeneous materials. Their
underlying principle is the Hill-Mandel condition of homogeneity (Hill, 1965, 1967; Mandel, 1971), which states that for
largely separated microscopic and macroscopic length scales, the volume-averaged strain energy is obtained as the product
of the volume-averaged stresses and strains in representative microstructural domain. Hierarchical models, involving
computational micromechanical analysis, have become increasingly popular for transfer of information from lower to higher
scales, usually in the form of effective material properties (Bohm, 2004; Chung et al., 2000; Fish and Shek, 2000; Ghosh
et al,, 1995, 1996; Guedes and Kikuchi, 1991; Kouznetsova et al., 2002; Terada and Kikuchi, 2000; Ghosh, 2011; Willoughby
et al., 2012). A number of hierarchical models incorporate the asymptotic homogenization theory with computational
micromechanics models, based on scale-separation with assumptions of macroscopic homogeneity and microscopic peri-
odicity. Uncoupling of governing equations at different scales is achieved through the incorporation of specific boundary
conditions, e.g. uniform displacement, periodicity, etc., on the microscopic representative volume elements or RVEs. FE?
multi-scale methods in Feyel and Chaboche (2000) solve micro-mechanical RVE models for every element integration point
in the computational domain to obtain homogenized properties.

Determination of effective material properties necessitates the establishment of a microstructural representative volume
element or RVE (Stroeven et al., 2004; Thomas et al., 2008; Heinrich et al., 2012). The concept of RVE was introduced in Hill
(1963) as a microstructural subregion that is representative of the entire microstructure in an average sense. This was
extended in Hashin and Shtrikman (1963), Jones (1975), and Drugan and Willis (1996) to a reference volume that is small
compared to the entire body, for which the volume average of state variables such as strains, stresses, etc., may be taken to
be the same as those for the entire body. The RVE can vary with the material property of interest, even for the same
microstructure. A large number of studies have been conducted with unit cells as the RVE, consisting of a single hetero-
geneity in a regular (square, cubic, hexagonal, etc.) matrix (Zeman and Sejnoha, 2007). The underlying assumption in these
studies is that the microstructure is a uniform, periodically repetitive array of heterogeneities and the body is subjected to
homogeneous boundary conditions. The occurrence of perfect uniformity or periodicity is however rare for many hetero-
geneous microstructures, as shown in the composite microstructure of Fig. 1(a) (Shan and Gokhale, 2002). For these non-
uniform microstructures it is difficult or even impossible to identify RVEs following the strict definitions. In these cases, it is
important to identify statistically equivalent RVEs or SERVEs for meaningful simulation of microscopic regions. Methods of
identifying the SERVE from morphological considerations, using a combination of statistical and computational analyses,
have been proposed in Swaminathan et al. (2006a,b) and Ghosh (2011). The SERVE is identified as the smallest, statistically
equivalent region of the microstructure, e.g. the micrograph in Fig. 1, that exhibits the following characteristics.

Location A
Location B Location C
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Location D (b)

Fig. 1. (a) Optical micrograph of a fiber-reinforced composite microstructure; (b) computer simulated microstructure tessellated into Voronoi cells showing
microstructural RVE regions.
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1. Effective material properties of the SERVE should be equivalent to the properties of the entire microstructure, at least
locally.

2. Distribution functions of parameters reflecting the local morphology in the SERVE should be equivalent to those for the
overall microstructure.

3. The SERVE should be independent of location in the microstructure, as well as of the applied loading.

The second characteristic assumes that for a given property, the set of distributions functions should depend on what set of
morphological parameters control that property. Fig. 1(b) shows an image of the micrograph, tessellated into a network of
Voronoi cells (Ghosh, 2011). The circular region is used to identify N inclusions belonging to a SERVE. In Swaminathan et al.
(20064, b) and Ghosh (2011) the size of the SERVE is obtained by systematically increasing its simulated volume till
convergence is achieved with respect to specific homogenized properties.

Various statistical descriptors have been used to estimate the size of the SERVE e.g. in Pyrz (1994), Torquato (1997),
Zeman and Sejnoha (2007), Kanit et al. (2003), Al-Ostaz et al. (2007), and Romanov et al. (2013). These descriptors include
distributions of the local fiber-volume-fraction, nearest-neighbor-distance, radial-basis-functions or the n-point correlation
functions introduced in Jiao et al. (2007a,b) for microstructure reconstruction and homogenization. Another popular
method of computational homogenization is through the use of statistical volume elements or SVEs. SVEs are typically
smaller than the RVEs or SERVEs. In general, a large number of SVE instantiations are analyzed and their homogenized
responses are cumulatively averaged to obtain converged properties (Yin et al., 2008; McDowell et al., 2011). However, the
SVE-based methodology can sometimes converge to inaccurate values of the material properties. To overcome this lim-
itation, a weighted SVE concept has been proposed in Qidwai et al. (2012), wherein the cumulative averages are weighted by
values of statistical descriptors such as the two-point correlation functions.

In general, the RVE-based methods of property determination are concerned only with the size of the representative
microstructural domain. No consideration is given to the appropriateness of the boundary conditions applied to the RVE for
solving the micromechanics problem. Conventionally, three types of boundary conditions are applied on the RVEs. These
are:

1. Affine transformation-based displacement boundary condition (ATDBC): This is defined as u/* = eg-x,- on the RVE boundary I,
where eg is a constant applied far-field strain and x; are the boundary positions, measured from the geometrical centroid
of the RVE.

2. Uniform traction boundary condition (UTBC): This is given as T; = on; on I, where 08 is the constant applied stress and n; is
the unit normal to the boundary of the RVE.

3. Periodic boundary condition (PBCs): This is given as uf” = e?jxj + uipd on I", where the periodic additional displacement u? Yis
equal on opposite faces of the RVE. This condition requires the boundary to be homologous.

Detailed studies on the effects of subjecting RVEs to uniform strain boundary condition (yielding the lower bound
(Reuss)) and uniform traction boundary condition (yielding the upper bound (Voigt)) have been conducted in Hazanov and
Huet (1994), Zohdi and Wriggers (2004), and Ostoja-Starzewski (2007). The underlying assumption of these boundary
conditions is that strains and/or stresses in the domain exterior to the RVE are constant. They assume that the RVE is
immersed in a continuum exterior to the RVE, whose strain energy density is spatially invariant and ignores the presence
and interaction effects of heterogeneities exterior to the RVE. The periodic boundary condition, on the other hand, auto-
matically repeats the microstructure, thereby rendering the deformation and damage patterns in the domain exterior to the
RVE homologous. For composites with non-uniform distributions, these assumptions of strain energy invariance or peri-
odicity are poor representations of the reality in the vicinity of the exterior RVE boundary. These boundary conditions can
result in a significant over-estimation of the RVE region due to convergence requirements.

This paper is aimed at developing a novel boundary condition for the statistically equivalent RVE of SERVE, overcoming
limitations of the conventionally applied boundary conditions. The interior of the SERVE should optimally encompass a
microstructural region that is required to represent the essential deformation mechanisms, and the effect of its exterior
domain should be imposed through realistic boundary conditions. This paper formulates a realistic boundary condition for
the SERVE, based on the statistics of the exterior microstructure. The material considered is a nonuniformly dispersed fiber-
reinforced elastic composite. Section 2 describes a method of reduction from the large microstructural problem to the
modified SERVE problem. The exterior statistics-based boundary conditions (ESBC) are developed in Section 3 and their
implementation is discussed in Section 4. Validation tests of the SERVE with ESBCs are conducted in Section 5. In Section 6,
the SERVE with ESBC is compared with emerging methods of homogenization, viz. those with statistical volume elements
(SVE) and weighted statistical volume elements (WSVE). The paper concludes with a summary of the novelty of this method
in Section 7. Various terms and definitions are given in the nomenclature section.

2. Reduction from microstructural to modified SERVE boundary value problem

Homogenized macroscopic material properties, derived from the SERVE, should be equivalent to those for the entire
microstructure such as the micrograph of Fig. 1(a). This microscopic domain, underlying a single macroscopic point, is
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Fig. 2. Schematic view of: (a) the microstructural domain MVE ©™* and (b) the MVE containing the SERVE along with the exterior domain, i.e.
_vae = _(23)(( U _Qserve.

designated as the microstructural volume element or MVE occupying a locally infinite region Q™¢ — Q% as shown in Fig. 2
(a). The MVE boundary is designated as "= that corresponds to the boundary of an infinite domain. The MVE is assumed to
consist of nonuniformly dispersed heterogeneities, e.g. fibers, particulates, etc.

The spatially invariant, volume-averaged or homogenized stresses ;" and strains &"® for the MVE are expressed as:

1 mve ~mve _ 1 mve
Qmve »/X‘vae Uij (X)dQ and eij - Qmve A)mve eU (X)dQ (1)

where U,T"e(x) and eJ"* (x) are respectively the spatially varying microscopic stresses and strains in the MVE. The homo-
genized stresses and strains for a linear elastic material are related as:

=mve _
Gij =

—mve __ ~Mve_mve
6 = Ljjk1 €kl 2)

where C,-j",:;’e is the homogenized stiffness tensor of the MVE. This stiffness can be obtained by solving a boundary value

problem using the finite element method, resulting from the minimization of the total potential energy of the MVE, subject
to an applied macroscopic strain field eg The corresponding principle of virtual work and the associated affine-displacement
boundary conditions on '~ are written as:

fmve Uivae (x)5€BﬂV€(x)dQ =0
0

subject to the affine transformation based displacement
uf (x=) = edx® on e 3)

where x{° are the coordinates of a point on the boundary 7", relative to a reference point such as the centroid of £2™. The
affine transformation-based applied displacements u/ (x*) on I"* requires that the homogenized strain in the MVE be equal
to the applied strain, i.e. & = eg To prove this, the homogenized strain is expressed as:

1 1
e = o ome /vae (ug;-we(x) + u}f}“e(x))dQ = S g frm (uf(X)nj(X) + Uj(X)ni(X)]dF

4)
Expressing the displacement u; on I'® as uf! (x*) = €9 xr, Eq. (4) yields:
1
~mve _ .0 ) _0s _ .0
e =l /r X dr = ) = € &
This reduces Eq. (2) to
o™ = G el (©6)

Detailed micromechanical analyses of the entire MVE, to determine the ¢"*(X) and ¢[**(x) fields, are computationally
prohibitive. Hence, only a subset with explicit representation of dispersed heterogeneities, e.g. fibers, particulates, should be
identified as the SERVE for detailed micromechanical analyses. This domain should be optimally small to make it compu-
tationally tractable. The ratio of the length scales of the MVE, L™, to that of the SERVE, L**"*¢, should be sufficiently large, i.e.

Lmve
[serve >1

2.1. Conventional methods of SERVE-based homogenized stiffness evaluation

Conventional computational homogenization methods perform detailed numerical analyses of the SERVE to obtain the

homogenized stiffness Cj;"*. The finite element framework involves the principle of virtual work, together with affine
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transformation-based displacement boundary conditions, stated as:
[ e o™ G00EE™ 0002 = 0
subjected to u (x5eve) = eJx3v¢  on rsrve o

The SERVE is subjected to an applied macroscopic strain field 62-. The homogenized stresses and strains over the SERVE are
expressed as:

_ 1 i} 1

0-56’""9 = Qserve f serve Ol (X)d.Q and eEEWé’ Qserve f serve Eij (X)d.Q 8

from which the homogenized stiffness is evaluated from the relation

_serve __ ~serve _serve ~ serve 0
6ij = Lijk1 €kl Cijkl €ki 9

The implicit assumption is that &f™* = ey for the affine transformation-based displacements ul on I to hold. Comparing
serve mve

Egs. (6) and (9), it is clear that the SERVE-based stiffness Cl i can accurately represent the MVE-based stiffness Cl]k, ,only if
55 = 6. While the latter equality may hold for a few selected cases, e.g. for uniform or self-similar microstructures, it is
rarely true for the general cases of arbitrarily dispersed microstructures. A novel method that can compensate for the
smaller solution domain in the SERVE is therefore necessary to provide accurate homogenized material properties.

2.2. SERVE with enhanced boundary conditions for accurate stiffness evaluation

Consider that the MVE domain £2™" in Fig. 2(b) is partitioned into two complementary domains, viz. (i) the SERVE
domain £2°¢™¢ and (ii) a domain £2¢* exterior to it, so that Qmve = Qext y Qserve To reduce the MVE boundary value problem to
that of the SERVE, the effect of the exterior domain £2°* should be manifested through equivalent conditions on the SERVE
boundary 7%, These conditions should effectively result in the same invariant strain energy for the SERVE as for the entire
MVE with the applied affine displacement conditions on I"*. The boundary conditions on 7**™*¢ should adequately reflect the
interaction of £2°* with the interior £2%™°,

To reduce the MVE boundary value problem in Eq. (3) to the SERVE boundary value problem, the equation of principle of
virtual work is divided over the complementary domains in Fig. 2(b) as:

foee o moegtoode + [ o ooseoode = 0 10,
As shown in Fig. 2(b), the boundary of the exterior domain £2° is constituted of four parts, viz. 't = [® y [+ y I'~ U [5erve
as shown . Here the segments /" and I~ correspond to opposite directions of a branch cut joining '~ and 7>, Applying
the divergence theorem to the first term containing the integral over £2°* and incorporating the stress field equilibrium
conditions in the absence of body forces g;;(x) = 0, the first term in Eq. (10) reduces to:

oo o @seo0de = [ T osuptoodr + [ T oosuptoodr - [ T aosup odr

- fr wne TECOSUS (X)AT an
where T# (x) = of M (x)n;(x) is the traction component, n;(X) is the unit outward normal to the different boundary segments I”
and uf* (x) corresponds to the displacement field for the exterior domain 2. The second and third terms on the RHS of Eq.
(11), corresponding to the boundaries I'* and I'-, are equal and opposite, and hence cancel each other.

Substituting Eq. (11) in Eq. (10), it is rewritten as:

/ T (x)suf (x)dIm — / T (x)suf*t (X)dI™ + f o (X)Sef e (x)dR2 = 0
re r

serve Qserve

12)

Evaluation of the homogenized stiffness C,}Z}'e requires the solution of the boundary value problem for £2™¢ subject to a
uniform macroscopic strain eg This can be realized as an applied affine transformation-based displacement u# (x*) = eg»x;’"
on "=, Consequently, the virtual displacement on I'*, i.e. suf* = 0, which causes the first term in Eq. (12) to drop out. The
principal virtual work equation thus reduces to
serve serve ext ext —

/Q . (X)6eS(X)dQ — f o TP SUP (0 dr = 0 a3
Boundary conditions associated with Eq. (13) should be appropriately determined to represent the effect of stresses and
strains in 2% on I**"°, If displacement boundary conditions can be constructed for /**™*¢, then the second term on the RHS
of the equation will drop out since suf** = 0 on 1.

As discussed earlier, evaluation of the homogenized stiffnesses requires the application of a macroscopic strain field
emve = €9 over the MVE (Qm* = Q& y Q%), In solving Eq. (13), the effects of 2% and £2°*™ should be considered
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respectively, to provide boundary conditions for 7. The effect of the applied strain in £2°°*¢ is manifested through the
affine-transformation based boundary displacement field u/ (x*¢¢) given in Eq. (7). However, the effect of the applied strain
in 2% on ¢ must also be included to accounting for microstructural non-homogeneity in this domain. This constitutes
the exterior statistics-based boundary conditions for Eq. (13), written as

uiESBC (xserve) — uiA (xserve) +u i*ext(xserve) on [/serve (] 4)

where u*e"‘ is anBenhancement due to the interaction of the nonuniform exterior domain with the SERVE. In the next section,
the form for u;”  is investigated for microstructures with nonuniform phase distributions.

3. Exterior statistics-based SERVE boundary conditions
3.1. Statistical descriptors for representing dispersed microstructures

Morphological statistics of the arbitrarily dispersed heterogeneities (fibers in this paper) in the exterior domain have a
dominant effect on the traction and displacements fields on the SERVE boundary. Various statistical descriptors, such as
distributions of the volume or area-fraction, nearest-neighbor-distance, etc., can be used to characterize the microstructural
morphology of non-uniformly dispersed composites. The n — point correlation functions have been proposed for char-
acterization of multivariate point sets in Torquato (1997) and Jiao et al. (2007a) and can be used to effectively describe
arbitrary distributions in composites.

Let /(x) and .fi(x) denote location-dependent indicator functions defined as:

M f
z’V’(x)={l Vxe_QM and lFI(X)={] Vxe_QFI =1,
0 Vx¢gQ 0 Vx¢gQh (15)

where the superscripts M and F; correspond to the matrix- and Ith fiber-phase respectively, and n, is the number of fibers.
Using these indicator functions, the one-point (S;) and two-point (S;) correlation functions for the microstructure £2™"¢ can
be defined as:

1
S1= 5 fg L F0de 16)

1 Fox) F
$20) = Se [ e 1FOOF X+ 112 a7

where r = (1, 9) is the position vector separating two points in the domain, with r = Irl corresponding to the separation
distance and 6 = «r is the orientation of the line joining these points with a reference direction. In composites containing
equi-radius fibers, the centroids can represent these points. The one-point correlation function corresponds to the fiber
volume fraction i.e. S; = @ for the entire domain. For multi-phase microstructures, the two-point correlation function S, is
defined as the probability that two points at positions X' and x/ and separated by a distance r¥ at an orientation & lie in the
same phase a. The function S is able to characterize anisotropy due to its dependence on the orientation. It reduces to the
radial distribution function, which is only a function of r¥ for isotropic distributions. It has been discussed in Torquato (2002)
that the spatial statistics of a two-phase medium can be completely described by specifying the volume fraction and two-
point correlation functions S,(r, ). Hence, in this work, these are used as the characteristic distribution functions re-
presenting microstructural morphology.

3.2. Reduction to an eigenstrain-based matrix problem

The presence of inclusions or fibers alters the spatially invariant, homogeneous state of the matrix stress a{}” strain eﬁ}/’

and displacement u fields in the MVE domain £2™"¢, The perturbed stress o, Strain € and displacement u; fields depend on
the morphological characteristics of the microstructure, e.g. inclusion/fiber geometry and location. The total stress oy, strain
¢;; and displacement u; fields in the heterogeneous MVE domain may be defined as the sum of the homogeneous and
perturbed parts as:

i (X) = o) + o (%), €j(X) = el +e; (%), and uix) = uM + upx) 18)
For elastic constituent phases, the total stress at a point in the MVE is defined as:

0 (X) = G (ewX) = Cifjel + o (X) 19)
where the location-dependent elastic stiffness tensor is written, using indicator functions, as:

G = MEOCH + Gl vI=1-n, 0)
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Using Egs. (20), (19), and (18), the perturbed stress may be related to the perturbed strain as:
o700 = ([ Moo CHy + FiooCh, | - Clfy )<l
+ (zM(x)C,-ij, +4f (x)CiJF;(,)e;,(x) 1)
which implies:
o (xM) = Clie, M) v {(xM|x € @M}: (Matrix M)

o (xf) = (Cigd - C,%)e% + Cﬂ,e;l(xﬁ) v {Xfx € Qfi}: (Fiber F) 2)

where 2" and @Ffi correspond to the domains of the matrix and the inclusion F respectively. The kinematic relations for the
perturbed strains and displacements are expressed as:

€;(X) = %(u;ti(x) + u;‘i(x)) 23)
Since the homogeneous stress 02-/’ is divergence-free, the stress equilibrium condition for the perturbed stress fields in the
absence of body forces can be written as:

o ;(X) =0 (24)
Substituting Eq. (21) into Eq. (24), the governing equation for the perturbed stresses is written as:

M) CMer, 00 + (x)CifL,eiu(x) =0 25)

The solution process to this problem of a heterogeneous medium can be simplified by introducing an eigenstrain-based
equivalent inclusion approach. In this approach, an eigenstrain ¢{}(x) is introduced in the inclusion/fiber domain to account
for a constraint the matrix imposes on the inclusions from autonomous deformation. Correspondingly, the second of Egs.
(22) for the inclusion reduces to:

o (x) = Oy (€,0 + 1FI e X)) 26)

The RHS corresponds to perturbed stresses in £, in terms of the matrix stiffness. Substituting Egs. (23) and (26), the
governing equation (25) for dispersed inclusions is reduced to a differential equation of perturbed displacements in an
equivalent homogeneous matrix problem with arbitrarily distributed eigenstrains, written as:

Chl 00 = = fio0( i) o

The eigenstrains depend on the shape and size of the inclusion, as well as on its material property-dependent interactions
with other inclusions in the ensemble.

Assuming that the eigenstrain terms ef;(x7) in Eq. (27) represent the effect of distributed point forces on the solution
uy(X), an infinite-space Green's function solution G;(x, xfi) is sought. The coordinates x/i represent the location of any point
source in £f for the eigenstrains. The corresponding Green's function should satisfy the differential equation:

Clo Gim,j x, xf) = — 5km5(x - XFI) 28)

where §(x) is the Dirac delta function and &y, is the Kronecker delta. The perturbed displacement field in a large MVE
domain with nj, dispersed fibers can be derived as a summed integral by substituting Eq. (28) into Eq. (27) as:

Ip
w0 = Y [ Qi Gieax, Xy x)d2
I=1

(29)
Substituting Eq. (29) in Eq. (23), the perturbed strains can be expressed in terms of eigenstrains as:
cx) = v MG F . Ayyed (xF
G = 5 I; /Q 1y Ol G O X1) + Gy 0%, X)) e (k1) 2 0

The solution to Eq. (29) requires Green's functions and eigenstrains e}, (x"). For isotropic, linear elastic matrix materials,
Green's function has been derived in Mura (1987) as:

1 | 05 1
Gix, xfy= — |2 - ——_rl
i ) 47[/4[ r! 4(1 - l/) Y 31
where 1’ = Ix — xfi| is the separation distance between the a source point xf and a generic field point x. The solution

procedure requires eigenstrains ef;(x) for the perturbed fields due to nonuniformly dispersed and interacting fibers.
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3.3. Perturbed strains and displacements with Eshelby tensors

Eigenstrains have been shown to be invariant inside ellipsoidal inclusions (Eshelby, 1957), where closed form expressions
for the integrals in Eqgs. (29) and (30) have been derived using elliptic integrals. A continuous function representing the
distribution of eigenstrains in the MVE can be expressed by a transformation of the constant eigenstrains in each inclusion
F, using the position-dependent indicator-functions, as:

hxix € Qmvey = Fixyey T, I=1-n, 32

where egF =0 e Qme\Qf. Closed form solutions of Eq. (30) have been derived as:

Sheid! VxeQf
G;j(X)Z AR " v]= 1"'np
Gijra (%, Xhe, 1 ¥ x ¢ Qfi and X' € Qfi 33)

The position-independent, fourth order interior Eshelby tensor Si]F{d for the inclusion domain Qf is obtained by integrating

F
Eq. (30) for field points x'7 in the inclusion. On the other hand, the exterior two-point Eshelby tensor é,»j,i, (%, x!) evolves from

integration of Eq. (30) for all field points x exterior to Qfi with a reference point (centroid) at x!. Thus interior and exterior
Eshelby tensors are defined over complementary domains as:

S vxe Qf
Kl ,
Siax) =4 7
0 VxeQme\Qf

and

A 0 vXxef
Giju (X, X =4 AR

! I = ]...np
Gijkl(xv x) vxe Qm"e\QFI

34

Using this complementarity, a unified 2-point tensor may be defined to represent both the interior and exterior Eshelby
tensors for the inclusion F as:

H £ it F F Afi £ mve
ikl (X, X) =1 (x)Sijk, +(1 = (x))GUk,(x. X) VXeQ (35)

and where X is a reference point in the inclusion F,. For a cylindrical fiber of circular cross-section with a radius a and
. . . . A . . .
centroid at X/, the interior and exterior Eshelby tensors Sji; and G (X, X)), respectively, are given in Mura (1987) as:

Sij = {a)T (B4 }(0) and (A;ijkl(xv xh) = (B ({64 } (0) (36)
The material-dependent vectors {a} and {p} are:

=2(1+20M) +9p2

M _1
1 3 - M 52 2-3p?
= y rN= —— My _ 2
{a} 8(1—UM) 0 {pr(n) 8(1—I/M) 41 + 2vM)y - 12p
0 4 - 122
0 16 — 2472

Here p = % with r = Ix — X/l and 9 = z(x — x!), X being a generic field point. The parameter 2 is Poisson's ratio of the matrix
material. The circumference basis tensor is given as:

6ijokl
ik dji + Oil0jk m cos 6
{4kt } () = singny ¢, where {nz} = {sin 9}
nin;dg 3 1
nin;ngn

The perturbed strains due to any isolated (non-interacting) inclusion F, in the MVE can be expressed by substituting Eqs.
(32) and (35) in (33), as:

e;(X) = fQ mve Hiiki (X, Ryefy(X)dX 37

where X is a point in the inclusion. The corresponding perturbed displacements may be written in terms of the Eshelby
tensors as:
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w0 = [ . Liux e R 38)
where
Liu(X, X) = lﬁ(x)TiIZl(x, )/i) + (1 - 1Fl(x))Difgl(x, )’i) 39)

Tif(', and Di’,'}l are obtained by integrating Eq. (29) for field points in the interior and exterior domains of the inclusion F. For
the cylindrical fiber of circular cross-section in Eq. (36), the displacement-transfer tensor in Eq. (39) is obtained as:

Tik (%, x!) = (0¥ (¥} 0)  and - Dye(x, X!) = {7} () ¥y} (0) 40)
where
, M _1 , —2(1—21/M)+p2
{n}( = a8(1 _ M) 3 —041/M , {rin = am 2(1 - 2I./M) + p2
4(1 - pz)
and
n;Sjk
{Wijk } (0) = | Njdik + Nkdjj
nin;ng

3.4. Interactions with multiple inclusions in the MVE

The perturbed strain in an inclusion is influenced by its interactions with other inclusions in the MVE. In the presence of
n, interacting inclusions, the perturbed strain in an inclusion F is written as:

A

-l F
F ] AF,
it Y G, xhey! vxe@f

J=1J#1 41)
where the coordinates x!, x/ correspond to reference points (e.g. centroids) in the inclusions F; and F, respectively. The first
term on the RHS is due to self-contribution from the domain @i, while the second term accounts for interactions with the
other n, — 1 inclusions in the ensemble. This equation represents a discrete contribution to the perturbed strain, which can
be evaluated only if the configurations and locations of all inclusions are explicitly known. However for large MVE's, only
statistical distributions such as the two-point correlation function S, in Eq. (17) are known through characterization.

For the population of inclusions represented by a probability distribution function S, (r) of Eq. (17), the summation in Eq.
(41) may be transformed to an integral by using the expected value theorem. The perturbed strain in the fiber f; (I = 1---np)
due to the interactions of dispersed fibers in £2™° can be expressed using Eq. (17) as:

«(xFy = Cff
efj(x 1) = Sijkle

A
e;(xf1) = Siju (Xeff (X') + /Q — S2(1) Gija (D€} (1) d2

42)
where r = x — x!. The second integral term represents the interaction effect of all fibers with the Ith fiber. This approach is
termed as the statistically informed Green's function or SIGF in this study.

3.5. Evaluation of eigenstrains

Eigenstrains with n, interacting inclusions are evaluated by applying Eshelby's stress consistency condition, which re-
quires the total stress inside the fiber 2f be equal to the total stress in the equivalent matrix domain. Using Eq. (26), this is
written as:

(M YoM (M e _ AR F

Cijkl(ekl + ekl) = Cukl(ekl + € — €y ) VXeQl “3)
M i i 1 1 . . .

where ¢j; is the homogeneous matrix strain. Rearranging the terms, the perturbed strain is written as:

e;}+(Cf’

_1 A
_CcM M R _ M
iipq Cl]pq) Cqul VXeQ €kl = €,] (44)

Substituting Eq. (42) into (44) yields the integral equation for the eigenstrains

A
(Mijir (X1) + Sijra (x1)) e (x1) + f!2 — Sy Giju e 1)dQ = — €

45)



10 S. Ghosh, D.V. Kubair / J. Mech. Phys. Solids 95 (2016) 1-24

where M (x!) = (Cfl,, 30 — Cjp)™'Chu-

For a single fiber pair I — J, Eq. (45) simplifies to a system of linear equations describing their interaction as:

F,
(Su,d + M,-jkl(xl))eﬁfl + é,jk],(r)eﬁﬁ = — e}l for Fiber
JAN F’ AF, M .
Gijry (e ! + Sl]kl + Mija (x/) e,d = —¢; forFiber ] 46)
From these equations, ¢; o) may be eliminated to yield:
A
(S,]kl + M]kl (X) umn (l')( nmnpq + anpq(xj)) qukl (l‘)]e,/(\lFI
A -1
( l]mn(r)< il T ankl(XJ)) - %(5#(5]1 + 5i15jk))€£/1' @7

wherer = x/ — x!.

3.5.1. Eigenstrains for identical fibers
The present analysis assumes that all fibers in the MVE £2™"¢ have identical shapes and sizes and material properties, and
hence:

E
5l]kl = Sukl = Sljk’
ijkl(x) = ukl(xj) = Ukl
AR

1
Gijia (r) = Gijkl (r = szkl(f, 0)

A
where Sj and My are spatially invariant and Gy is position dependent and describes interactions between the fibers.
Under these conditions, Eq. (47) is simplified as

A A
((Sijkl + Mijkl) - Gijmn (r)(smnpq + anpq)_1quI<l (r))GI/:lFI

A
= (Gijmn(l')(smnkl + M)~ = %(5ik5j1 + 5i15jk))€k1vll (48)

For the MVE £2™¢ consisting of a large number of interacting dispersed fibers, Eq. (48) is represented using an integral
term incorporating the correlation function S, (r). The corresponding eigenstrain e{} in a reference fiber occupying a domain
QF is given as:

N A -1
€jj 4x) = [lF(X)(Sijab + Mijap) — fg S2(®) Gijrmn () (Smnpq + anpq)_]cpqab(r)dg:l

mve\gF

A 1 M
[((Sabmn + Mabmn)~ / e, 52 () Grmnki (l')d-Q) ~ 5 Gakdpr + 5a15bk)]€k1

= Aijkl (X)e% VX e Qmve (49)

From Eq. (42), the corresponding perturbed strain at an observation point O (see Fig. 3) is expressed as:

A
e5(X) = [z‘” ) Sijmn (X)Amnk (X) + fg e g Sz(r’)ijmn(r’)Amnm(r’)dﬂ]e%' = Biji (X)eil 50,

Here x and r are the position vectors of the observation point O and field point J relative to the centroid of a reference
inclusion F, and r’ = (x - 1‘). The first-term on the RHS of Eq. (50) exists only when the observation point lies inside the
reference fiber, i.e. when x € QF (hence the use of the indicator function). The total strain tensor at a point X in the presence
of the arbitrarily dispersed fibers is then derived to be:

€ij(X) = elf + €X) = (%(5ik5jl + i djk) + Bijkl(x))€M = Sij(X)el] (51)

where S (X) is the strain concentration tensor at X due to the interaction of a fiber with all others in the heterogeneous
MVE. The corresponding perturbed displacement at the point x in the MVE, and on the SERVE boundary 7*¢"*¢, is derived by
substituting Eq. (49) in Eq. (38) to yield

ux(X) = S5 () Limn () At (1) 22 |}
#(X) (/vae\QF 2 () Limn (8) Ampkr (1) ]€kl (52)
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Fig. 3. The effect of an interacting fiber-pair I and J, in the MVE 2™ on a field point O located on the boundary of the SERVE r*¢.

Displacement fields on the SERVE boundary I°°¢ are therefore represented through the enhancement of the affine
transformation based displacements with the perturbed fields in Eq. (52) that account for the exterior statistics-based
characterization of the microstructure.

4. Implementation of the exterior statistics-based boundary conditions

The procedure of evaluating and implementing the exterior statistics-based boundary conditions (ESBCs) on the
boundary of the SERVE ¢V is provided in the following steps.

1. Choose the size L of the SERVE domain £2°°™*¢ and its corresponding boundary /*¢*¢. In this study, the cross-section of the
chosen SERVE is either a square or an ensemble of Voronoi polygons generated by tessellating the heterogeneous MVE.
The SERVE boundary in the latter case is considered to be of two types. The first type corresponds to a periodic boundary
that is created by tessellating a domain obtained by periodically repeating the SERVE in the directions of periodicity. The
second type corresponds to a boundary that is created by tessellating the domain in its actual morphology.

2. Discretize the SERVE domain £2°°*¢ into a finite element mesh. For the 3D domains considered in this study, 4-noded
tetrahedral elements are used.

3. Extract the positions and coordinates (x;) of all the boundary-nodes on 7*¢,

4, Cgmpute the affine transformation based displacements u (x) on all the boundary nodes with the applied far-field strain
€j as

A 0
u,- (X) = €inj,

where x; is measured relative to the centroid of the SERVE.

5. Compute the two-point correlation function S, for the entire MVE domain £2™° using Eq. (17).

6. Compute the perturbed displacements u; (in a discrete manner) using Eq. (52) with the calculated S,(r, 6) in the previous
step for all the boundary nodes, extracted in Step 3. The steps followed are:

e Each radial direction is discretized into N, number of equally spaced segments with increment Ar = T where a is the
radius of the fibers, R is the radius of horizon that corresponds to the extent of the MVE. It is 1mportant to note that the
lower limit of the integration is r=a. An ath radial point is given as r, = aR -

® The angular direction is discretized into N, equally spaced points of A9 = "fhe pth angular point is given by ¢; = p N

® At a SERVE boundary node at X, the discretized perturbed displacement components in Eq. (52) are evaluated for an
applied strain €,] as:

27(R - ) = &
% DY aLimn(X — (@AT, BAO))Amnia (X — (AT, BAO))S2 (X — (aAT, BAD)) [ef

a=1 p=1 (53)

ur(x) =

7. The exterior statistics-based boundary conditions (ESBCs) on the boundary nodes are computed and applied as:

ufBC ) = uf ®) + upx)

The above procedure is repeated for different SERVE sizes L.
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5. Validation tests of the exterior statistics-based boundary conditions (ESBCs)

The validity and effectiveness of applying exterior statistics-based boundary conditions (ESBC) on the SERVE are ex-
amined in this section. The SERVE is identified as a statistically equivalent subset of the overall MVE. This section discusses
methods for choosing the SERVE from sampling subspaces within the MVE using statistical descriptors. Three-dimensional
finite element simulations are conducted, subjected to (i) affine transformation based displacement boundary conditions
(ATDBCs), (ii) periodic boundary conditions (PBCs) and (iii) exterior statistics-based boundary conditions (ESBCs). Con-
vergence in the homogenized moduli with increasing SERVE size is taken to be a metric of the effectiveness of boundary
conditions.

5.1. Simulations of SERVE with different boundary conditions

To demonstrate the effect of different boundary conditions on the convergence of the SERVE sizes, a MVE is simulated
from data generated by microstructural characterization of a unidirectional fiber-reinforced composite in Lenthe and Pollock
(2014). The composite is constituted of e-glass-fibers embedded in an epoxy matrix. The image processing tool in MATLAB is
used to obtain the centroidal positions and radii of the fibers. The simulated MVE, depicted in Fig. 4, has a section dimension
of 1513 um x 782 um consisting of 20760 fibers, each having a 4 ym diameter. The average fiber volume-fraction of the
entire MVE is S; = 0.2205. Young's modulus and Poisson's ratio of the epoxy matrix are EM = 3.2 GPa and ™ = 0.4, while
those for the e-glass-fibers are EF = 80 GPa and . = 0.25 respectively.

5.1.1. Microstructural characterization using statistical distribution functions

The fibers in microstructure are of identical size and material properties. Consequently, a maximum of two-point cor-
relation functions i.e. S; and S, is considered to be adequate in characterizing the two-phase composite (Niezgoda et al.,
2008, 2010), as discussed in Section 3.1. To identify SERVESs, sampling subspaces are designated in the microstructural MVE,
subsets of which constitute candidate SERVEs. Fig. 4 depicts five highlighted sampling subspaces from SS; to SSy belonging
to the MVE. The sampling subspaces are chosen from microstructurally distinct regions with non-overlapping boundaries
and separated centroids. The subspaces have similar average volume fractions with cross-sections containing 1152 fibers
enclosed in squares of ~ 240 pm. Homogenized stiffness tensor components of the candidate SERVE subsets of these
subspaces are used as metrics for establishing convergence criterion for determining the SERVE size.

The correlation functions S; and S, in the sampling subspaces are evaluated and plotted in Fig. 5. S; corresponds to the
volume fraction @ (area-fraction in the case of unidirectional fiber composites) that is defined as the ratio of the fiber
volume to the volume of the surrounding matrix. In a dispersed fiber composite, the location dependent S; can be obtained
by Voronoi tessellation of the microstructure, where the neighborhood of a fiber is represented by its associated Voronoi
polygon/polyhedron (Ghosh et al., 1997; Ghosh, 2011). The local area-fraction is then obtained as the ratio of the fiber cross-
sectional area to the area of the Voronoi polygon. The probability distribution of S; for the MVE with 20760 fibers is shown
in Fig. 5(a) (solid-line), while those for the five sampling subspaces are shown with markers. The mode of the distribution, at
which the maximum probability density occurs (D;0qe=0.2513) is different from the mean (D,ecqn=0.2205). This indicates
some clustering and matrix-rich regions in the MVE. The distributions of the three sampling subspaces follow the same
trend as the MVE. Also the modes of their distribution are very close to 0.2513, indicating that the chosen sampling subspace
is statistically similar to the entire sample.

The present analysis assumes statistical isotropy of fiber distribution, i.e. independent of the angular location 8. Hence
the two-point correlation function S, in Eq. (17) is only dependent on the scalar distance of separation r (Jiao et al., 2007a,b).
Fig. 5(b) depicts S, as a function of the normalized scalar distance of separation r/a, where a = 2 pm is the fiber radius. The S,
distributions for all the five sampling subspaces, shown with markers, converge to that for the MVE after some initial
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Fig. 4. Microstructural volume element (MVE) of the unidirectional fiber-reinforced composite analyzed, showing a few candidate sampling spaces (SSs).
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Fig. 5. (a) Probability-distribution of one-point correlation S; or local-volume fraction @; (b) two-point correlation S, as a function of normalized radial
distance.

decaying oscillations. As is expected, S, tends to @2 for larger distances shown by the dash-dot line. This again demonstrates
the statistical equivalence of the sampling subspaces.

Fig. 6 examines the effect of the size of the exterior domain Q¢ ( = @M\ Q%¢) on the two-point correlation function S,,
in relation to that of the MVE depicted in Fig. 4. Candidate SERVESs, ranging from 10% to 50% of £2™, are excluded from the
MVE to establish the domains £, for which their correlation functions S, are calculated. For a SERVE size of L = 240 ym
that corresponds to the size of the sampling subspace, the exterior domain is ~90% of the MVE volume. The SERVE size
L = 531 pm corresponds to an exterior domain that is ~50% of the MVE volume. The normalized S, function for the exterior
domains is plotted in Fig. 6 as a function of the normalized distance (r/a). The S, function for the MVE is shown as a solid-
line, while those for the different exterior domains are shown with markers. In general, the S, functions for the different
£ show similar variations as the MVE. The difference starts to show only for large SERVEs (smaller £2%"s), at larger
distances of separation for r > 15a. The two-point correlation function of the exterior domains is not significantly affected
even when large SERVE volumes are excluded from the MVE. Hence, the two-point correlation functions used in the cal-
culation of the exterior statistics-based boundary conditions (ESBCs) are kept as those for the MVE.

5.2. Accuracy of simulations with exterior statistics-based boundary conditions

The ESBCs for the SERVE, developed using statistically informed Green's function (SIGF) in Section 3, are examined for
accuracy. Finite element simulations are performed for the sampling subspace SS; that has a cross-section size of
240 pm x 240 pm, consisting of 1152 dispersed fibers. The first set of simulations corresponds to the applied affine trans-
formation-based displacement boundary condition (ATDBC) u',-q. Candidate SERVEs are selected from subdomains within SSy,.
A 40 um x 40 pm candidate SERVE section, containing 31 fibers is highlighted by the white square boundary in Fig. 7(a). The
thickness of the composite domain is taken as 10 um. It is discretized into a mesh of 4-noded tetrahedral elements having a
minimum dimension of 0.8 um. This corresponds to approximately 13 elements in the z-direction. The ATDBC displacements
areuf = eng, with the applied far-field strain ¢}, = 1. Contour plots of €;; are shown on the deformed configuration in Fig. 7
(a). The strain in the fibers is lower than in the matrix due to the larger fiber stiffness.

Displacement solution along the white line is extracted from FE simulations of the SSy. This is compared with the SIGF-
augmented solution u; = uf* + u#, where u; is the perturbed displacement solution from Eq. (52). The displacement solu-
tions, normalized by the fiber radius, are plotted in Fig. 7(b). The abscissa corresponds to the total length along all sides of
the white SERVE boundary. The distance 0-1 corresponds to the bottom edge, 1-2 to the left edge, 2-3 to the top edge and
3-4 to the right edge. Excellent agreement is seen between results of the SSj; FE simulations shown with markers, and the
SIGF-augmented displacements shown in solid lines. This provides a validation of the ESBC-based SERVE approach. The
SIGF-augmented solutions clearly show that even though the far field strain is ¢;; = 1, the u; component is not zero on the
white SERVE boundary due to fiber interactions. Thus a directly applied ATDBC or PBC on the SERVE boundary will lead to
erroneous results.
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Fig. 6. Two-point correlation (S,) as a function of the normalized radial distance for the exterior domain Q.
5.3. Candidate SERVE solutions using different boundary conditions

Fig. 8(a) shows a set of seven concentric square cross-sections, corresponding to candidate SERVESs of increasing size and
number of fibers, in the sampling subspace SS;. The concentric volumes are chosen to have approximately the same volume
fraction as the median volume fraction of the MVE. This is plotted in Fig. 8(b). The solid line corresponds to the median S; of
the MVE obtained from the probability distribution function in Fig. 5(a), whereas the dots are for the seven candidate
SERVEs in Fig. 8(a). The smallest SERVE in Fig. 9(i) consists of 17 fibers in a 35 pm x 35 pm region, and the largest SERVE in
Fig. 9 (SSy) contains 1152 fibers in a 240 pm x 240 pm region. Details of the SERVE size and the associated number of fibers
are listed in Table 1.

The candidate SERVEs are subjected to ATDBC with u = eg-xj, corresponding to a far-field uniaxial strain ¢J; = 1. All other
strain components are zero. The corresponding contour plots of the strain €;; for the different candidate SERVEs are shown

€11
20 ‘ ‘ ——
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cou ’ i=2 from SIGF
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: 10r 4 i=2 from FEM |
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(a)
Fig. 7. (a) Contour plot of ¢1; in the sampling subspace SS;; subjected to an applied strain e?] = 1; (b) comparison of displacements on a candidate SERVE

boundary by (i) the exterior statistics-based displacement solution using SIGF and (ii) FE simulations of the region SSy. The abscissa shows the length along
the bottom (0-1), right (1-2), top (2-3) and left (3—-4) edges in sequence.
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Fig. 8. (a) Concentrically increasing candidate SERVE domains in a sampling subspace SS of the MVE; (b) variation in the number of fibers (Ny) as a function
of the SERVE size (L).

in Fig. 9. With ATDBCs, the edges of the SERVE domains remain planar. The strain distribution is non-uniform due to the
arbitrary dispersion of fibers. Simulation results obtained by applying ATDBCs and ESBCs on a 40 pm x 40 um SERVE,
containing 31 fibers, are illustrated in Figs. 10 and 11 respectively. The plots in Fig. 10(a) and 11(a) show the displacement
components in the 1 and 2 directions along the surface of the SERVE. The abscissa shows the length along the bottom (0-1),
right (1-2), top (2-3) and left (3-4) edges of the SERVEs in sequence. The difference between the results with the two
boundary conditions is observed in these plots. The perturbations in u; = u{ + ui with the ESBCs are pronounced on the
right and left edges, corresponding to the effect of the exterior domain on the SERVE. While uf = 0 for far field strain ¢}; = 1,
u; = uj is non-zero along the edges with the ESBC. Unlike for PBCs, the deformed edges with the ESBCs are not homologic.
Contour plots of the strain €; are depicted in Figs. 10(b) and 11(b). While regions of strain localization are observed in the
SERVE with both the boundary conditions, the intensity is found to be less with ESBCs. The contour plot of the difference in
the maximum principal stress, obtained by applying the two boundary conditions, is shown in Fig. 12. The difference is

SSII

Fig. 9. Increasing square cross-sections of candidate SERVEs in the sampling subspace SS; showing a distribution of the strain e;;.
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Table 1
SERVE parameters.

SERVE i i iii iv \% vi vii SSyi
Size L (upm) 35 40 64 84 115 137 165 240
Number of fibers (Nj) 17 31 67 112 218 317 499 1152

pronounced in ligaments between fibers that are in close proximity. The maximum principal stresses are larger with ATDBCs
than with ESBCs for the same far-field strains.

Fig. 13 plots the ESBC-based displacement solutions (u;) for two different SERVE sizes L = 40 um and L = 165 pm (ii and
vii in Fig. 9), corresponding to a far-field uniaxial strain of ¢}; = 1. The displacement components in the ordinate are nor-
malized by the size L to understand the effect of increasing SERVE size on the applied ESBC u; = u/* + uy. The perturbed
displacements u, = uj are higher for SERVE-ii than SERVE-vii in Fig. 13(b). This suggests that the perturbed displacements
diminish with increasing SERVE size. Similar results are also seen for uy.

5.4. SERVE Size from convergence of homogenized stiffnesses

For a continuous undamaged domain £2, the volume-averaged stresses (5;;) and strains (¢;;) are obtained from Eq. (1). The
homogenized elastic stiffness tensor components are subsequently calculated from the elasticity relations &; = G-
Convergence of the homogenized stiffness components with increasing SERVE size is used as a metric to determine the
necessary SERVE size. In this study, the dominant stiffness component G117 is used for convergence. Details of the procedure
for obtaining homogenized moduli have been discussed in Swaminathan et al. (2006a).

To assess the effect of boundary conditions on the converged SERVE size, the homogenized stiffness component G111 is
plotted as a function of increasing SERVE size L in Fig. 14. The normalized homogenized stiffness from the direct numerical
simulation of the entire SS is C“—N‘,l = 2.8485, corresponding to its converged value. In the plot, L = 0 corresponds to the
matrix alone for which the SERVi-I size is of zero volume. The different SERVEs considered are shown in Fig. 8(i-vii). An error
in the homogenized stiffness component is calculated as the difference between the stiffness components for each SERVE
and the entire sampling subspaces in SS; to SSy in Fig. 4 with L = 240 pm. The plots in Fig. 14(a) show that the homogenized
stiffness obtained with the ESBCs converges at a SERVE size of approximately L = 40 pm consisting of 32 fibers. In contrast,
much larger SERVE sizes of approximately L180 pm are needed when subjected to ATDBCs or PBCs. The error plots in Fig. 14
(b) consolidate this conjecture that convergence with ESBCs is much faster than with the other boundary conditions.This
example elucidates the role of exterior statistics on the boundary condition of the SERVE.

The slower convergence of the SERVE when subjected to ATDBCs or PBCs, in comparison to those subjected to ESBCs, is
examined further. In Fig. 15(a), two-point correlation functions normalized by the square of the one-point correlation
function, i.e. % are plotted as a function of the normalized radial distance of separation % The % values are for the sampling
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Fig. 10. Results with ATDBCs: (a) displacement along the SERVE boundary (bottom (0-1), right (1-2), top (2-3) and left(3-4)) and (b) contour plot of ¢q; in
the SERVE.
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Fig. 11. Results with ESBCs: (a) displacement along the SERVE boundary (bottom (0-1), right (1-2), top (2-3) and left(3-4)) and (b) contour plot of ¢1; in
the SERVE.

(o - S E"

Fig. 12. Contour plot showing the difference in maximum principal stresses in the SERVE by the ATDBCs and ESBCs normalized by the matrix modulus.

subspace SSy, with L = 240 um, as well as for the increasing candidate SERVEs in Fig. 9. As shown in Fig. 5, S, for all the
sampling subspaces are very similar to that of the entire MVE. The normalized two-point correlation function for all the
candidate SERVEs follows the same trend as the MVE, though truncated earlier due to their smaller size. For r ~ 20a cor-
responding to SERVE sizes L > 100 pm the ratio S_g asymptotically approaches 1. This size L > 100 pm, corresponding to
r > 20q, represents a length-scale beyond which the interactions of between fibers are negligible. This also represents a
SERVE size, for which the effect of the fibers in the external domain is minimal. Hence, the convergence of the effective
moduli is attained with either ATDBCs or PBCs. This result shows that predictions of the SERVE size from morphology-based
characterization functions concur with that from the convergence of effective properties (elastic moduli). For smaller SERVE
sizes in the range of 0 < L < 100 pm the interaction of fibers in the exterior domain with those in the SERVE is significant
and the ESBCs are deemed to be significantly advantageous.
For a more effective measure of the SERVE size, an integral length parameter A(R) is defined as:

R
AR) = fo S, (r)dr

where R is the largest possible radius belonging to the same phase (inclusions) within a SERVE that is used to evaluate S,. In
general R is dependent on the SERVE size L. Fig. 15(b) plots %R) as a function of the normalized SERVE size % The solid line is
a least-square fit of the numerical data for SERVEs in Fig. 8(a), shown with circular markers. As opposed to Fig. 15(a), which
depicts an oscillatory convergence, a monotonic convergence to the unit value is seen in this figure with increasing size.
Consequently the difference of %R) from the asymptotic value of 1 may be used as a measure to determine the SERVE size.
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Fig. 13. Effect of the SERVE size on the exterior statistics-based boundary displacement solutions (a) u; and (b) u, along the boundary.
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Fig. 14. (a) Variation of the normalized homogenized stiffness tensor G 111/EM and (b) error in G111 as a function of the SERVE size.

For example, the SERVE with L = 115 pm has a small difference and is hence insensitive to the applied boundary conditions.

6. Comparison of ESBC-based SERVE with statistical and weighted statistical volume elements (SVE/WSVE)

Statistical volume elements (SVE) e.g. in Yin et al. (2008) and McDowell et al. (2011) constitute a designated set of
random microstructural volumes, which are too small to satisfy the statistical homogeneity requirements of the RVE for any
given response function. In general a large number of SVEs must be simulated to generate the ensemble statistics required to
capture the desired responses. The SVE concept is based on the hypothesis that the composite microstructure with dis-
persed heterogeneities is statistically homogeneous and hence its volume-averages are identical to the ensemble-averages.
In the context of this paper, a homogenized modulus obtained for the MVE or a large sampling subspace (SS) is expected to
be equal the mean of the volume-averaged modulus obtained from a large number of instantiations of a much smaller
analysis volume. This equality in terms of the ensemble-average of any micromechanical variable may be expressed as:
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Fig. 15. (a) Two-point correlation functions normalized with the square of the one-point correlation function for the SS; and candidate SERVEs and
(b) normalized integral length (%R)) with increasing SERVE size.

S 1 19 1
¥= Qmve fgmve ¥ (x)de = N Z {stel ./_ste, '{’(x)dQ]'

I=1 (54)

where ¥ is the volume-averaged value of any spatially varying field quantity ¥ (x), 254 is the volume of the Ith-instantiation
of the SVE and N corresponds to the number of samples in the ensemble. In general, the SVE instantiations follow the size
restraint Qe < Q'e,

For comparison with the SERVE predictions, the SVE problem is set up with individual square SVEs of size ' = 40 ym
containing exactly N} = 32 fibers. This SVE size is chosen to approximately match the size of the converged SERVE with the
ESBCs in Section 5.4, corresponding to a volume-fraction S; = 0.2513 in Fig. 5(a). A total of 100 candidate SVEs are chosen

from the MVE in Fig. 4. The computational SVEs are chosen to be of three forms as shown in Fig. 16, all satisfying the volume
fraction constraint. These are:

1. square section with straight-edge boundaries taken from a sampling subspace (SS) domain shown in Fig. 16(a);

2. section with a boundary obtained by Voronoi tessellation of the actual SS to yield SVE domain @& = Q51\ Q4. This is
shown in Fig. 16(b);

3. section that is generated by periodically repeating the core of 32 fibers in the directions of periodicity (x and y) and
subsequently performing Voronoi tessellation to generate the SVE boundary (see Ghosh, 2011) as shown in 16(c).

For the periodic microstructures, the boundaries are homologic and can be modeled with PBCs, while for the actual domains
with non-homologic boundaries, they can be subjected only to the ATDBCs.

For this study, two-dimensional plane-strain analyses of the 100 candidate SVEs are conducted by prescribing ATDBCs
and PBCs separately. A preliminary study is conducted to understand the effect of the boundary geometry and applied
boundary conditions on the candidate SVE response. In Fig. 17, strains in the three type of SVEs, subjected to ATDBCs and
PBCs are examined, through the contour plots of the axial strain €1;. The volume-averaged stiffness components G for a
SVE are derived from the relation &; = 'U,C,ék, between the volume-averaged stresses and strains in Eq. (1). The normalized
stiffness component G'm/EM for the three types of SVEs with different boundary conditions in Fig. 16 are summarized in
Table 2. Since the effects of the boundary geometry or prescribed boundary condition on the stiffness coefficients are not
very different, SVEs with square boundaries are considered in the remainder of this study.

In the SVE-based homogenization method, the ensemble-averaged stiffness components Cj, are obtained for the po-
pulation of N SVEs as:

1'd
Gt = = 2, G
N 121 . (55)

where C,-j'-kl are the volume-averaged stiffness components for the Ith SVE. With increase in the number of instantiations
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periodically repeating a core set of fibers.

corresponding to the ensemble population N, the ensemble averaged stiffness components are expected to converge to their

in terms of the minimum number of

. Convergence criterion is defined

ikl
instantiations or SVEs N required in the ensemble to attain a steady-state, invariant value of the homogenized stiffness in Eq.

(55). Convergence is ascerta

respective homogenized values for the MVE C

d from the plot of the cumulative mean (CM) of the normalized stiffness as a function of the

mne

ensemble population size N, as shown in Fig. 18(a). The cumulative mean of a stiffness component Cjj; normalized by the

matrix Young's modulus EM is defined as

&1

ig. 17. Contour plots of ¢; in different types of SVEs with different boundary conditions: ATDBCs on (a) square and (b) actual domain, and (c) periodic

domain; and PBCs on (d) square and (e) periodic domain.
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Table 2
G’lll/EM for three types of SVEs under different boundary conditions.

(a) (b) (c) (d) (e)

295 2.96 2.95 2.94 294

For an ergodic microstructure, the cumulative mean of the volume-averaged modulus is expected to converge to that of the
entire MVE (or sampling subspaces in this study) G7;;. In Fig. 18(a), the cumulative mean obtained from 100 SVE samples is
shown with the dashed line. The SVE size is L' = 40 pm with N} = 32. Clearly the stiffness does not converge to G7;;. This lack
of convergence indicates that the chosen size of the SVE is inadequate and a larger domain should be considered. On the
other hand, the SERVE subjected to the ESBCs converges to (j;; with only one instantiation of size L = 40 pm with Ny = 32.

To mitigate convergence limitations of the SVE-based method to the correct stiffness values, a weighted statistical vo-
lume element or WSVE-based homogenization method has been proposed in Qidwai et al. (2012). This method uses a
weighted ensemble averaging over a number of SVE instantiations. The weighting functions have been obtained from
statistical descriptors of the MVE and the candidate SVEs. In the present work, the two-point correlation function S, and the
integral length parameter A are used for determining the weights associated with SVEs. These characterization functions are
depicted in Fig. 19.

The maximum, mean and minimum of S, and A for an ensemble consisting of N=100 SVEs are calculated as:

100 =100

I=
mean(sz(r))zl > Sk mean(A)zl > oA
N 5 N 3

minS;(r))= min Sir); min)= min Al
VI:(1<1<100) vI:(1<1<100)
max(S;(r)) = max Sir); max@) = max A
vI:(1<1<100) vI:(1<I<100)

The variation of S; normalized by the square of the volume-fraction, i.e. z_g for the MVE is depicted with a solid line in Fig. 19
1

(a). For the 100 SVEs, the maximum, mean and minimum values of % are also plotted in this figure. The mean value closely
1

follows the variation for the MVE. However the minimum and maximum plots show some scatter. The mean integral length
A for the 100 SVE instantiations, as well as that for the MVE, is plotted in Fig. 19(b). The difference from the reference MVE
values is due to truncation with the smaller volume of the individual SVEs. The weighting functions used in the WSVE
approach are calculated as the ratio of the integral length for each SVE to that for the MVE, i.e.

3.10 : 0.20 :
SVE subjected to u? SVE subjected to uiA
3.05¢ — WSVE subjected to u? é — WSVE subjected to uiA
= SERVE subjected to u> ¢ = 0.151 7
= 3.00 L =
= |®)
= = 0.10}
@) O
5 |
© = 0.05
1©)
‘ 0.00 :
2.80 50 100 0 50 100
number of SVEs number of SVEs

(a) (b)

Fig. 18. (a) Cumulative mean (CM) of the ensemble-averaged stiffness as a function of the number of SVEs, by the SVE and WSVE methods; (b) error in CM
of the stiffness as a function of the number of SVEs.
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The weights for the 100 SVEs are plotted in Fig. 19(c).

The weighted cumulative mean of a stiffness component Cj, normalized by the matrix Young's modulus EM is now
defined as:
Gk 1

N =1

where w; are the weights for each SVE instantiation plotted in Fig. 19(c). The weighted cumulative mean converges to the
accurate homogenized modulus (71; with increasing ensemble population for N > 20. While this trend is certainly an ad-
vantage over conventional SVEs, the ESBC enhanced SERVE is still significantly more powerful as it converges with a single
instantiation. The corresponding error in the cumulative mean, defined as the difference from the stiffness (7;; of the MVE
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(equivalently the sampling subspaces), as a function of the number of SVEs is plotted in Fig. 18(b). The error for the WSVE
method progressively decreases with increasing number of SVEs, and tends to be negligible for N > 20. However, con-
vergence is not monotonic with the WSVE method due to the oscillations in the weights illustrated in Fig. 19(c).

7. Summary and conclusions

This paper addresses the important problem of defining and identifying the microstructural representative volume
element that is commonly simulated to determine response functions and equivalent properties of a heterogeneous ma-
terial. Statistically equivalent representative volume elements (SERVEs) are needed for microstructures that have nonuni-
form dispersion of heterogeneities (Swaminathan et al., 2006a,b). Specifically, this paper investigates the role that boundary
conditions play on the establishment of the SERVE. Only small deformation elasticity problems are considered in this study.
It is known that the conventionally applied uniform displacement, uniform traction or periodic boundary conditions are not
optimally accurate representative conditions on these SERVE boundaries. Most of the studies on RVE or SERVE have however
ignored the effect of boundary conditions. They determine the extent of the RVE/SERVE domain by analysis with the
conventional boundary conditions. This results in a non-optimal RVE domain, often containing a large number of hetero-
geneities that makes the computational analysis rather tedious.

The major conjecture in this paper is that if boundary conditions imposed are truly representative of the material that is
exterior to the SERVE, the SERVE domain required to predict homogenized response functions can be significantly smaller
than that with the conventional boundary conditions. A minimum SERVE domain is however required to manifest the
necessary deformation mechanisms representative of the microstructure. Thus, if a locally infinite microstructural domain
0™¢ is assumed to be constituted of the SERVE domain £2°°¢ and the complementary exterior domain Q% i.e.
Qmve = gserve y et the boundary condition imposed on the SERVE should reflect the interaction between heterogeneities
belonging to £2°°"*¢ and £2°*'. An additional constraint is that since the exterior domain £ is potentially very large, it is only
prudent that a statistical representation of heterogeneities in £2°* be incorporated in any formulation for deriving the SERVE
boundary conditions. This constitutes the objective and problem description for the proposed method.

In this paper, a novel exterior statistics-based boundary condition (ESBC) is developed for the SERVE using statistics of
the distributions in £ to build Green's function-based interaction model. This has been termed as the statistically in-
formed Green's function or SIGF approach. The Eshelby equivalent inclusion method is used for manifesting the SIGF-
augmented boundary conditions. The advantage of this approach is that the interactions due to the exterior microstructure
are represented through the statistical functions rather than individual fibers in the ensemble. The exterior microstructure,
for the distributions considered, is adequately characterized by the one-point S; and two-point correlation S, functions. The
effectiveness of the ESBC over other conventional boundary conditions like the affine transformation based displacement
boundary condition (ATDBC) and periodic boundary condition is tested through a series of numerical simulations.

The converged size of the SERVE is significantly smaller with the ESBC in comparison with ATDBC or PBC. Next the SERVE
subjected to ESBC is compared with other emerging methods like statistical volume element (SVE) and weighted statistical
volume element (WSVE). While the ESBC-based SERVE does not need ensemble simulations, the SVE-based methods often
require a large number of simulations for convergence. The simulations in this study show that SVEs with a small simulation
volume (identical to the SERVE with ESBC) converge to inaccurate values of the macroscopic response function like stiffness.
Larger SVE sizes are required for accurate convergence. While this inaccuracy can be rectified in the WSVE approach, large
ensemble populations are needed for their convergence.

The proposed method in this paper is deemed as a powerful way of defining the concept of representative volume
elements for problems dealing with nonuniform heterogeneous materials. This study is only the beginning of this ex-
ploration and future studies will consider strong inhomogeneities such as clustering as well as evolving microstructures
with plasticity and damage.
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