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SUMMARY

A non-uniform rational B-splines (NURBS)-based interface-enriched generalized finite element method is
introduced to solve problems with complex discontinuous gradient fields observed in the structural and
thermal analysis of the heterogeneous materials. The presented method utilizes generalized degrees of
freedom and enrichment functions based on NURBS to capture the solution with non-conforming meshes.
A consistent method for the generation and application of the NURBS-based enrichment functions is
introduced. These enrichment functions offer various advantages including simplicity of the integration,
possibility of different modes of local solution refinement, and ease of implementation. In addition, we show
that these functions well capture weak discontinuities associated with highly curved material interfaces. The
convergence, accuracy, and stability of the method in the solution of two-dimensional elasto-static problems
are compared with the standard finite element scheme, showing improved accuracy. Finally, the performance
of the method for solving problems with complex internal geometry is highlighted through a numerical
example. Copyright © 201 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A large number of boundary value problems in continuum mechanics and other engineering
disciplines involve non-smooth solution fields that are weakly discontinuous (C 0-continuous).
For instance, a jump in the gradient of the displacement or temperature field in heterogeneous
materials is expected along the material or phase interfaces. Such problems are generally described
by a governing differential equation with discontinuous coefficients. The finite element analysis
(FEA) is one of the standard numerical methods which is highly suited for the approximation of
the solution to smooth problems. In order to utilize FEA for problems with gradient discontinuities,
a mesh needs to be generated in which the edges/surfaces of the elements conform to these
discontinuities to utilize the inherent C 0-continuity properties of the elements in these places. For
a problem with complex-shaped discontinuities, such mesh generation step is very complicated and
tedious. Similarly, the same approach requires cumbersome re-meshing steps for problems with
evolving discontinuities.

Over the past 20 years, more generalized forms of FEA have been developed including the
extended FEM (XFEM) and generalized FEM (GFEM) [1–4]. These methods are mostly developed
to reduce expensive mesh generation/evolution steps and to enable the FEA to handle discontinuous
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NIGFEM FOR PROBLEMS WITH COMPLEX DISCONTINUOUS GRADIENT FIELDS 951

problems with non-conforming meshes. In a generalized framework, to account for solution
discontinuities, a number of new degrees of freedom (dofs) are added to the nodes of the elements
existing in the neighborhood of these discontinuities, and the finite element approximation space
is locally enhanced with a priori known enrichment functions. Through these enrichment func-
tions and extra dofs, discontinuities not affordable by standard polynomial shape functions can be
captured. The augmentation of the polynomial space of the standard FEA with enrichment functions
is usually realized through the partition-of-unity concept [1, 5]. For instance, to account for the pres-
ence of strong discontinuities associated with a crack, the approximation space has been enhanced
with discontinuous enrichment functions [6, 7]. These basis functions added to the approximation
space should be linearly independent to guarantee an invertible system of equations. Therefore, spe-
cial treatments are sometimes needed to generate and apply these enrichment functions in order to
guarantee the convergence [8, 9]. Other difficulties for GFEM methods are the complexity of their
implementation [10] and the large number of additional dofs, which they may introduce.

GFEM approaches have been successfully used in problems with weak discontinuities, and many
research efforts are devoted to the identification of the new enrichment functions for this purpose
[11–18]. Recently, Soghrati et al. [10] have introduced a novel method based on the framework
of GFEM to solve these types of problems. In this method, named interface-enriched GFEM (or
IGFEM), additional dofs are introduced in the solution along the intersections of the material
interfaces with the edges/faces of the non-conforming mesh. Placing enrichment dofs along the
intersection points eliminates some of the previously mentioned implementation issues associated
with the GFEM methods [8, 9]. Additionally, the enrichment functions utilized by this method
require no special treatment. These functions are constructed from the first-order Lagrangian poly-
nomials, and they best capture linear weak discontinuities. With such first-order approximation to
the solution field around weak discontinuities, it was shown in [10] that a precise solution can be
captured for problems with simple interfaces. In order to consider more complex interfaces or to
capture a higher accuracy solution, the method utilizes more dense non-conforming meshes.

In the current study, we build on the IGFEM by introducing more flexible enrichment functions.
Non-uniform rational B-splines (NURBS) [19] are employed as a basis to represent enrichment
functions in the framework of IGFEM; therefore, the current approach is referred to hereafter as
NURBS-based IGFEM (NIGFEM). This approach utilizes some of the concepts of the isogeomet-
ric analysis (IGA) [20], which provides superior advantages for solving problems with complex
domains and a more accurate solution under an optimal rate of convergence [20, 21]. These promis-
ing features have increased the popularity of the IGA in many fields such as structural mechanics
[20], solid-fluid interactions [22], structural vibration [23], and even for problems with higher-order
governing differential equations [24]. Moreover, IGA has been recently applied to the problems with
strong discontinuities [25, 26].

The current work integrates some of the IGA concepts into the IGFEM in a two-dimensional
(2D) setting. Related approaches to this work can be found in [27–29], which use the standard IGA
to describe a solution field piecewise defined by the trimmed NURBS. Such approaches are
very interesting when trimmed NURBS geometries (usually provided with computer-aided design
(CAD)) are defined within a unique parametric space. Trimmed NURBS-based IGA can find solu-
tions in domains with any number of vacant cavities. However, it does not allow for heterogeneities.
In practice, such constraints restrict the application of the trimmed NURBS analysis to simple
CAD models constructed with boolean operations. For more general domains, like the microstruc-
ture of the heterogeneous materials, providing a trimmed NURBS representation is not practical.
Another difficulty arises during the numerical integration of the complex parametric spaces defined
by the trimmed NURBS geometries. NIGFEM, unlike IGA and its trimmed NURBS extension,
does not restrict the solution field to a specific unique approximation and parametric space. More-
over, the method offers a straightforward numerical integration procedure and provides most of the
advantages of the GFEM/XFEM.

The rest of this paper is organized as follows. In Section 2, the NIGFEM formulation for linearly
elastic boundary value problems is provided. The implementation steps of the NIGFEM including
the construction of the NURBS enrichment functions and the proposed numerical integration are
discussed in this section as well. In Section 3, the robustness, effectiveness, and convergence of
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NIGFEM are compared with those of the regular FEM and IGFEM. To highlight the capabilities
of the presented method, an application problem solved by NIGFEM is discussed in Section 4.
Section 5 summarizes the important features of the method and provides concluding remarks.

2. NIGFEM: FORMULATION AND IMPLEMENTATION

2.1. Basic formulation

Let Sh � S and Vh � V denote the solution and weight spaces, respectively. The Galerkin weak
statement to the elasto-static problems involves finding uh 2 Sh such that

a
�
wh;uh� D L �wh� 8wh 2 Vh; (1)

in which the bilinear term a
�
wh; uh

�
and linear term L

�
wh
�

are defined by

a
�
wh; uh� D Z

�

rwh W �d�; (2)

L
�
wh� D Z

�

wh:Fd�C
Z
�T

wh:Td�; (3)

where wh is the weight function, � denotes the stress tensor, � is the domain, �T is the portion
of the boundary under traction, and F and T are the body force and applied tractions, respectively.

By discretizing the domain into m finite elements

�
� Š �h D

mS
iD1

�i

�
, one can use the weak

statement (1) directly to find a finite element approximation to the solution field as

uh.x/ D
nX
iD1

Ni .x/ui; (4)

where Ni .x/ is a set of basis functions taken from Lagrangian space, n is the number of nodes, and
ui denote the displacement dofs. However, this approximation to the solution field requires a con-
forming mesh that maintains C 0-continuity along material interfaces. To adopt a non-conforming
mesh, the solution field is augmented by enrichment dofs ˛j and enrichment functions ‰j .x/ as

uh.x/ D
nX
iD1

Ni .x/ui C

nenX
jD1

‰j .x/˛j ; (5)

in which nen is the number of enrichments. It should be emphasized that, in the current formulation,
there is no restriction for the type of basis functions Ni .x/ utilized for the standard part of the finite
element solution. In this study, standard Lagrangian shape functions are used forNi .x/, and NURBS
are used only to construct the enrichment functions ‰j .x/. Another notable difference between
NIGFEM and more regular GFEM/XFEM is the fact that, in NIGFEM, the additional dofs ˛j ’s
are introduced along the interface instead of being added to the nodes of the non-conforming mesh.
In order to capture a curvilinear interface, we construct enrichment functions ‰j .x/ using NURBS
basis functions. The adopted number of NURBS basis functions .nen/ depends on the order of the
NURBS curve representing the interface, its level of complexity, and the level of discretization of the
non-conforming mesh. Further details about the construction of the NURBS enrichment functions
are provided in the next section.
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2.2. Enrichment functions

Let us consider a domain discretized with standard bilinear quadrilateral elements and a material
interface with complex geometry represented by a univariate NURBS curve:

C.w/ D
nX
kD1

NNk.w/Pk; (6)

where n is the number of control points of C.w/, NNk’s are the NURBS basis function, and Pk’s are
the control points of C.w/. It should be noted that the parametric coordinate w 2 W is chosen in
the interval of the knot vectors defined by

W D
�
w1; � � � ; wnCpC1

�
; (7)

where wi are the knot values and p is the order of the NURBS basis for C.w/. To perform an
IGA on a heterogeneous/multiphase domain, like the one shown in Figure 1a, one has to subdi-
vide it into a number of NURBS patches that conform to the material interface, as suggested by
Figure 1b. These NURBS patches share their edges with the interface; thus, they naturally satisfy
C 0-continuity requirements along the material interface. To avoid the need for these conforming
NURBS patches, the NIGFEM allows for non-conforming meshes, as shown in Figure 1a, and only
requires the position of the intersection points between the element edges and the material inter-
face. These intersection points can be found simply with point-inversion methods. Fast and reliable
algorithms have been proposed for this purpose [30]. It is worth mentioning that, by increasing the
complexity of the material interface(s), the computational cost of finding the intersection points
for the NIGFEM is only a fraction of that of creating conforming NURBS patches needed for
the IGA.

Once the intersection points are identified, the enrichment functions can be constructed. For this
purpose, we refine the interface (with knot vector W) at knot values associated with the intersection
points. The multiplicity of the knot values is dictated by the order p of C.w/. Let us represent
the refined interface curve by C0.w/. After the knot refinement, the mathematical continuity of the
basis functions of C0.w/ with support over these intersection points is reduced to C 0. However,
the geometric continuity of C0.w/ remains untouched, and it represents C.w/ with a number of
additional control points .n0 > n/. Up to this point, each intersecting element has a subsection
of the interface, and each subsection only relies on a subset of the control points with support on
that element. In the next step, for each intersecting element, we utilize these subsets of the control
points and the topological information of that element to construct NURBS patches for the split
subdomains. In the current study, for simplicity purposes, the order of C.w/ is selected to be p D 2;

Figure 1. Illustration of the contrast between (a) the proposed NIGFEM approach and (b) the traditional
IGA based on conforming NURBS patches.
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therefore, the order for each split subdomain is selected to be pu D 2 along the curvilinear interface
direction (u) and pv D 1 in the normal direction (v). It is worth mentioning that, for higher-order
NURBS curves, the same approach is applicable.

In a 2D analysis, two different situations are possible when an interface intersects a quadrilateral
element. It may intersect with two opposite edges of the element and divide it into two curvilinear
quadrilateral regions, like elements A and C in Figure 1a, or the interface may divide an element
into a curvilinear triangle and a curvilinear pentagon, as is the case for the element B in Figure 1a. In
this work, we do not allow for the more complex case of which a high-curvature interface intersects
an element edge more than once. In this case, it is always possible to further refine the mesh until it
falls into one of the situations described earlier.

To better understand the process, let us show how the enrichment functions are constructed for
the element C shown in Figure 1a. The material interface cuts this element into two curvilinear
quadrilateral split subdomains S1 and S2. To generate enrichment functions for this element, we
first need to construct 2D NURBS patches of these split subdomains. For this purpose, we select
all control points of C0.w/ that are associated with the basis functions with support over C. For this
element, four control points of C0.w/ reside in the element space labeled by P1;j .j D 1 : : : 4/,
shown in Figure 2a. We also take four dummy control points along the edge of S1 parallel to the
interface subsection, P2;j .j D 1 : : : 4/. The initial and final control points P2;j are the two vertices
of the element C, and those in-between are selected uniformly along the edge that connects these
vertices. We call these control points dummy because no dof is associated with them, and they are
just used to construct NURBS patches. To construct the NURBS patch for S1, a knot vector along
each of the parametric directions is also needed. For the direction parallel to the interface (u), we
simply select the knot span Uc , corresponding to the subsection of C0.w/ that resides in the element
C. For the normal direction (v), the simplest choice is a linearly interpolating NURBS basis with the
associated knot vector Vc D Œ0; 0; 1; 1�. With the selected coefficients Pi;j .i D 1; 2; j D 1 : : : 4/,
and the knot vectors, Uc and Vc , we can create a 2D NURBS patch for S1. We take the same
approach to construct a 2D NURBS patch for S2 using Pi;j .i D 1; 3; j D 1 : : : 4/ and the same
knot vectors Uc and Vc . Let us label the basis functions associated to each subdomain by NN S1

i;j and
NN
S2
i;j .i D 1; 2; j D 1 : : : 4/. Element C in this example has four NURBS enrichment functions

‰j .x/ corresponding to each control point along the material interface. These enrichment functions
are simply constructed from NN

S1
i;j and NN S2

i;j through

‰j .x/ D

8̂<
:̂
NN
S1
1;j .x/ x 2 S1

j D 1 : : : 4:

NN
S2
1;j .x/ x 2 S2

(8)

Figure 2. (a) Construction of element subdomains. (b) NURBS-based enrichment functions associated with
the four control points defining a curved interface.
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The same approach is taken to construct enrichment functions for the elements that are split
into a curvilinear triangle and a curvilinear pentagon, for example, the element B shown in
Figure 1a. However, in order to recreate the sharp corners, we superpose a number of dummy con-
trol points on top of each other. For example, for a quadratic NURBS curve C.w/, at least two
superposed dummy control points are used to recreate the sharp corner in the NURBS patches.
Figure 3 depicts these cases and the suggested strategies to construct the NURBS patches B1 and
B2. In each case, P1;i and P2;i are two iso-curves of the NURBS patch corresponding to v D 0 and
1, respectively.

The variation of the enrichment functions for the element C is depicted in Figure 2b. As
apparent there, these functions accurately regenerate the material interface geometry in this element,
and they only take values along the interface and rapidly vanish away from the interface to the cor-
ners. Furthermore, these functions are naturally C 0-continuous along the interface. Thus, they can
reproduce a discontinuous gradient across the material interfaces by augmenting the approxima-
tion space. These properties make them a natural selection for the enrichment purpose, ‰j .x/, in
Equation (5).

2.3. Integration

In the NIGFEM framework, the construction of NURBS patches serves two purposes. First, the
enrichment functions are constructed from the basis functions of these patches, as discussed in the
pervious section. Second, these patches are directly used for the purpose of the numerical integra-
tion of the weak form. In fact, each NURBS patch is generated by mapping a simple rectangular
parametric space to a complex physical space. Thus, to perform a numerical integration over the
NURBS patches, one can map this parametric space directly into master element space and then
utilize a high-order Gauss quadrature scheme. This approach is referred to hereafter as patch-wise
mapping (PWM). However, another approach is to map each non-vanishing knot-span of the para-
metric space of each patch into the master element space and then employ a less expensive Gauss
quadrature scheme. The latter approach is referred to hereafter as span-wise mapping (SWM). Both
of these approaches have been suggested previously in [16, 27, 28]. As depicted in Figure 3, for
each patch with two non-vanishing knot spans in the parametric direction u and one knot span in

Figure 3. Possible geometric cases arising from the intersection of an interface with a quadrilateral element.
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the parametric direction v, PWM maps the whole parametric space into the master element space,
while SWM maps each non-vanishing knot span into the master element space separately.

Aside from the mapping strategy, it should be noted that NURBS are in general rational B-Spline
functions which cannot be integrated exactly by Gauss quadrature. In fact, the numerical integration
of NURBS functions is still an active area of research [16, 27, 31, 32]. Furthermore, the shape
of a NURBS patch also adds complexity to the numerical integration [33, 34]. For instance, at
the superposing control points used to construct the subdomains B1 and B2 shown in Figure 3,
the mapping between the physical space and the parametric NURBS space is singular. Therefore,
during the numerical integration of the weak form for such elements, the Jacobian is singular at
these points. Singular functions are also observed in other GFEM/XFEM schemes [35], and their
numerical integration is also an active area of research [36, 37].

Figure 4 compares the accuracy of the PWM and SWM schemes in the numerical integration
over the NURBS patch �1 for r 2

h
0;
p
2l
i
. As shown in Figure 4a, for r=l < 1, the patch �1 is a

curvilinear pentagon, while for r=l > 1, the patch �1 changes to a curvilinear triangle (Figure 4b).
Figure 4c and d presents the accuracy of both schemes for the numerical evaluation of the area of
�1. For the calculation of the area, the integrant is a constant (unity) function, and the Jacobian
determinant can be considered to be at least a quadratic function. Therefore, a 2 � 2 scheme is
deemed to be enough. By comparing 2� 2 schemes, we observe that there is a jump in the accuracy
of the quadrature computed by both schemes at r=l D 1. This jump corresponds to the afore-
mentioned change in the morphology of the patch �1 from the curvilinear pentagon (Figure 4a)
to the curvilinear triangle (Figure 4b). The singularity of the Jacobian matrix at the superposing
control points of �1 also reduces the accuracy of the numerical integration. It is observed that,
under the same conditions, the SWM scheme is more accurate compared with the PWM scheme.

Figure 4. (a) Integration domain defined by NURBS patches �1 for r 2 Œ0; l�, and (b) r 2 Œl;
p
2l�.

(c, d) Comparison between the PWM and SWM schemes in the numerical integration of the area A of the
patch �1.
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The detrimental effect of the superposing control points of a NURBS patch is also confirmed
in [33, 34]. A closer look at Figure 4d reveals that for this problem, a 2�2 SWM scheme outperforms
even a 6 � 6 PWM scheme over a large portion of the interval r 2

h
0;
p
2l
i
. These observations

suggest that the SWM scheme is generally more efficient than the PWM scheme and is therefore
adopted in the remainder of this study.

3. CONVERGENCE STUDY

Figure 5a shows the geometry and imposed boundary conditions of the problem selected to test the
convergence and accuracy of NIGFEM. The problem domain consists of a circular inclusion �1
embedded in a unit-size square�1[�2 D �, with the stiffness ratioE2=E1 D 2, and the Poisson’s
ratio �1 D �2 D 0:3, yielding a weakly continuous displacement field along the interface. Figure 5b
shows a sample non-conforming mesh made of bilinear quadrilateral elements used in the NIGFEM
analysis. The accuracy and convergence of NIGFEM are quantified with the aid of the following
error measures:

ku � uhkL2.�/ D

sR
�
ku � uhk2d�R
� kuk

2d�
; (9)

kek� D

sR
�

�
" � "h

�
W
�
� � �h

�
d�R

� " W �d�
; (10)

where the reference displacement u, strain ", and stress � are determined using a very fine conform-
ing finite element mesh of bilinear quadrilateral elements (mesh size h ' 0:005). For the purpose
of comparison, the same problem is also solved by the IGFEM scheme [10] as well.

Figure 6a illustrates the rate of convergence of the NIGFEM, FEM, and IGFEM solutions in
terms of the L2-norm with respect to the mesh size h. As apparent there, the NIGFEM provides
a convergence rate almost identical to the FEM solution obtained with a conforming mesh, with a

Figure 5. (a) Domain and boundary conditions of the convergence study problem. (b) A structured 5 � 5
rectilinear mesh composed of bilinear quadrilateral elements with mesh size h D 0:2 used in the NIGFEM

and IGFEM analyses.
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Figure 6. Comparison between the rate of convergence provided by the NIGFEM, IGFEM, and FEM with
respect to mesh size h in terms of (a) L2-norm and (b) energy-norm and with respect to the number of
degrees of freedom ndof in terms of (c) L2-norm and (d) energy-norm. (e) Variation of the largest eigen-
value �max of the stiffness matrix for an enriched element with respect to the ratio between the areas of its

NURBS patches and for three values of the stiffness ratio.

better accuracy. NIGFEM also provides a rate of convergence identical to the IGFEM but with bet-
ter accuracy for the same non-conforming mesh. The improvement in precision associated with the
NIGFEM is due to a more accurate representation of the geometry of the material interfaces and of
the solution in the immediate vicinity of these interfaces. As expected, the rate of convergence of the
NIGFEM is governed by that of the underlying finite element discretization, that is, bilinear quadri-
lateral elements in the present study. As presented in Figure 6b, a comparison between the energy
norms shows that the NIGFEM also provides a better approximation for the gradient of the solution
field compared with the FEM solution. With respect to the total number of dofs (including standard
and enrichment dofs), ndof , a comparison between these methods for the same error measures also
shows similar trends for the NIGFEM and FEM, as shown in Figure 6c and d.
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A closer look at Figure 6a and c reveals that, for coarse meshes, NIGFEM outperforms FEM and
IGFEM. However, for the highly refined meshes, NIGFEM and IGFEM start to lose their optimality,
mainly because of the formation of ill-conditioned enriched elements. In these elements, material
interfaces pass very closely from one of the nodes of the non-conforming mesh and cut the element
into two patches with a large difference in their area. To illustrate this point, Figure 6e depicts the
variation of the largest eigenvalue �max of the stiffness matrix of the element shown in Figure 4a.
As indicated there, it can be observed that, by increasing the ratio between the area of the patches
�1 and �2, �max increases substantially. Such enriched elements are numerically stiff, and their
stiffness matrix is rank deficient. With an increase in the number of such elements, �max for the
global stiffness matrix of the system also increases. Such linear system is more sensitive to the trun-
cation errors, and the solution to such system is less accurate. With very fine meshes, the formation
of such stiff enriched elements is more probable. The formation of these misbehaving enriched ele-
ments is also reported by other XFEM/GFEM studies [38, 39]. Another source for increasing �max

(e) (f)

(d)(c)

A

B

s

(a) (b)

Figure 7. Distribution of the strain component "22 for E2=E1 D 10 computed from (a) regular FEM (h D
0:2), (b) IGFEM solution (h D 0:2), (c) NIGFEM solution (h D 0:2), and (d) reference FEM (h D 0:005).
The variation of normalized (e) u1 and (f) u2 displacements along line A � B . The inset compares the

accuracy of all of the methods close to the material interface.
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is the presence of superposing control points in the NURBS patches [33, 34]. However, increasing
the order of the NURBS basis can enhance the behavior of these elements [33]. Another possible
remedy is to pass the interface exactly through the node in such situations to avoid the formation of
these elements in the first place.

To conclude this convergence study, we note that, over the range of coarse meshes and with
complex material interfaces, NIGFEM performs better than regular FEM and IGFEM. To highlight
the performance of the NIGFEM scheme over a coarse discretization, the distribution of the "22
strain component captured by regular FEM, IGFEM, NIGFEM, and the reference (highly refined)
FEM schemes are shown in Figure 7a–d, respectively. IGFEM and NIGFEM utilize a structured
mesh of bilinear quadrilateral elements (shown in Figure 5b) enriched in the intersecting elements
with linear Lagrangian and quadratic NURBS enrichment functions, respectively. The conventional
FEM solution is captured by an unstructured conforming mesh of bilinear quadrilateral elements
with approximately the same level of refinement (h D 0:2). As expected, in contrast with FEM and
IGFEM, the NIGFEM preserves the exact geometry of the inclusion regardless of the mesh size
utilized. In fact, the NIGFEM affords to recover weak discontinuities perfectly through a few added
enrichment functions and dofs. A close examination reveals that the NIGFEM also provides a better
approximation to the gradient of the solution field. As shown in Figure 7e and f, the variation of
the displacement components u1 and u2 along the line A�B also highlights the better accuracy of
the NIGFEM.

It is known that a large mismatch between the material properties of a heterogeneous media
introduces large gradient jumps in the solution field. The effect of the material mismatch ratio
(E2=E1) on the solution provided by the NIGFEM method is depicted in Figure 8a and b,
showing that the accuracy of the NIGFEM decreases with the increasing material mismatch, as also
reported for the GFEM [40]. To explain this result, we refer to the study illustrated in Figure 6e,
where we observed that �max increases with the stiffness mismatch E2=E1. Therefore, a lower

Figure 8. Effect of material mismatch (E2=E1) (top figures) and number of enrichment functions per ele-
ment (bottom figures) on the convergence and accuracy of the NIGFEM solution. (a, c) L2-norm of the

error; (b, d) energy norm.
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quality solution is expected. As another degree of flexibility, NIGFEM allows for arbitrary num-
ber of enrichment functions for each enriched element. This feature enables the method to capture
solutions for complex interfaces with coarse non-conforming meshes. As shown in Figure 8c and d,
NIGFEM provides identical accuracy for the solution and its gradient by increasing the number
of enrichment functions in each enriched element from four to six and eight. In this example
with a quadratic NURBS interface geometry, four enrichment functions are enough to capture the
right solution.

4. APPLICATION PROBLEM

To highlight the application of the presented method, the model plane stress problem shown in
Figure 9a is solved with the NIGFEM scheme. Three complex shape inclusions �2, �3, and �4
with properties E2, �2 are embedded in a unit-size L-shaped matrix material (E1; �1). The contrast
between the properties is selected such that E2=E1 D 10 and �1 D �2 D 0:3. A uniform displace-
ment ıx D 0:001 is applied to the lower boundary of the domain while the upper-left boundary is
kept fixed. A relatively coarse structured mesh made of bilinear quadrilateral elements (h D 0:02)
with a total of approximately 5000 dofs is used to discretize the domain as shown in Figure 9b.
For reference, the classical FEM scheme is used to solve the same problem with a highly refined
conforming mesh (h D 0:005) with over 72,000 dofs.

Figure 10a compares the distribution of the �22 stress component computed from the NIGFEM
solution (left) with its reference FEM counterpart (right). As apparent there, the NIGFEM success-
fully predicts the stress field. Depicted in Figure 10b, the variation of the effective stress along the
line A � B confirms this observation. It should be noted that the displacement field experiences
large gradients in the neighborhood of the material interfaces. To capture these large gradients in
a conventional FEM analysis, adaptive mesh refinement techniques are usually adopted. Likewise,
an IGA requires a refinement on the NURBS patches adjacent to the interface in these situations
[20]. In order to avoid the global refinement of a NURBS patch, it has recently been suggested to
replace the B-spline basis functions utilized in NURBS with their more generalized form, known
as T-splines [41]. Similarly, the use of T-splines as enrichments in a generalized IGA framework
has also been suggested [28]. Recent work on the Bezier extraction of T-splines has also facilitated
the uniform treatment of NURBS and T-splines in IGA [42]. In comparison with these methods,
the NIGFEM offers a more simple and practical approach to perform local mesh refinement using
conventional NURBS (B-Spline) functions while successfully capturing the gradient field along
the interface.

Figure 9. (a) Application problem with L-shaped domain containing three irregular inclusions. (b) Structured
mesh adopted with the NIGFEM solver.
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Figure 10. (a) Comparison of �22 stress distribution obtained with the NIGFEM scheme (left) and reference
FEM solution (right). (b) Distribution of normalized effective von Mises stress �e=.�e/max along lineA�B .

5. CONCLUSIONS

The formulation and implementation of a NIGFEM for solving 2D planar elasticity problems have
been presented. The NIGFEM utilizes NURBS to augment the finite element approximation space
and minimize geometric errors associated with the discretization of a complex domain. The method
presented in this manuscript shows a great potential in capturing discontinuous gradients along
complex-shaped interfaces with relatively coarse non-conforming meshes. The use of NURBS in
the enrichment of the finite element solution in the elements intersected by the material interfaces
provides a natural and accurate way to capture the geometrical details of the internal boundaries.
Two integration schemes have been presented and compared, showing the superior precision and
lower computational cost of the SWM approach. The application problem has illustrated the ability
of the method to simulate the structural response of a heterogeneous component with complex-
shaped inclusions. The potential of the NIGFEM observed in this 2D study is likely to be especially
attractive in a 3D setting, where the creation of conforming meshes is substantially more complex.
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