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Highlights

• We develop a NURBS-based interface-enriched generalized finite element method.
• We use the method to solve a simplified thermal model of a network of micro-channels in composites.
• Solutions significantly more accurate than standard FEM are obtained with coarse meshes.
• Near-optimal convergence rate is obtained.
• Geometry of curved micro-channels can be handled exactly.

Abstract

Motivated by recent advances in manufacturing techniques for high-temperature microvascular composites, a NURBS-based
interface-enriched generalized finite element method (IGFEM) is developed to solve a simplified thermal model of microchannels
embedded in the materials. This method is capable of handling curved and branched microchannels. Solutions more accurate
than those achieved with the conventional finite element method can be obtained with coarse meshes that do not conform to
the geometry of the microchannels. Near-optimal asymptotic convergence rate is also achieved with this method even for highly
curved microchannels. The capability of the numerical scheme is demonstrated by solving problems with complex microchannel
configurations.
c⃝ 2014 Elsevier B.V. All rights reserved.

Keywords: NURBS; Interface-enriched generalized finite element method; Microvascular composites; Thermal; Curved microchannel;
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1. Introduction

Microvascular materials are a class of biologically-inspired materials that mimic the vascular systems found in
nature. The recent development of a manufacturing technique for microvascular composites based on a sacrificial
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fiber approach has enabled the creation of complex networks of microchannels embedded in composite parts [1]. By
changing the fluid flowing in the microchannels, the material is capable of multifunctional applications such as thermal
management, manipulation of electromagnetic signature, electrical conductivity tuning and chemical reactivity [1–3].
In many of these applications (thermal, structural, electromagnetic), the presence of the microchannels results in
fields with discontinuous gradients in the material. Hence, the computational analysis and design of microvascular
composites require a method capable of capturing weakly discontinuous solution fields, i.e., solutions that are
C0-continuous with finite gradient jumps.

Standard finite element methods (SFEM) can be applied to solve such problems provided a mesh that conforms to
the geometry of the microchannels is used. Solutions obtained with non-conforming meshes have poor accuracy as
the error bound of the a priori error estimate shows that a weakly discontinuous solution field converges suboptimally.
With a conforming mesh, the C0 continuity of the FEM solution across the element boundaries naturally captures the
discontinuity of the gradient fields and optimal convergence can be recovered. However, generating a conforming
mesh with good quality elements can be a challenging process especially for complex networks of embedded
microchannels. For transient [4] or optimization [5,6] problems, reconstructing a conforming mesh at each iteration
can be a formidable and inefficient process, and might violate energy conservation [7].

The generalized FEM (GFEM) [8] and extended FEM (XFEM) [9] are widely-used and successful methods to
handle weakly or strongly discontinuous fields with non-conforming meshes. These methods are based on the partition
of unity method in which enrichment functions that closely approximate the true solution are multiplied by the
partition of unity functions to construct the local enrichment functions [10–12]. The GFEM and XFEM have been
developed to handle strongly discontinuous problems such as crack propagation [7,9,13] and weakly discontinuous
problems such as material interface [14] and intense thermal loading due to shockwave [4]. Closely related to this
work is a GFEM developed to capture weakly discontinuous temperature field in the thermal analysis, design and
optimization of microvascular materials [5,6,15].

Recently, an interface-enriched generalized FEM (IGFEM) that has some advantages over GFEM/XFEM has
been proposed [16,17]. In the method, enrichment nodes are introduced at the intersections between the non-
conforming elements and the interface, and associated with them are the enrichment functions. This approach al-
lows local enrichment functions to be constructed without using partition of unity functions. The advantages of
this method over GFEM/XFEM are straightforward application of essential boundary conditions and a lower num-
ber of degrees of freedom. However, interfaces are still approximated as line segments in the original IGFEM
method.

The aforementioned improvement in manufacturing techniques has allowed the creation of microvascular materials
with complex curved microchannels [1,18]. In this regard, an XFEM that has been developed for curved strong and
weak discontinuities [19] could potentially be applied in the analysis of microvascular composites. The approach sum-
marized in [19] describes the interface by a level set function, which is then approximated by standard finite element
interpolation.

In the present study, we adopt a different approach and develop a non-uniform rational B-spline (NURBS)-
based IGFEM for triangular linear elements to handle curved microchannels described by NURBS. NURBS include
B-splines as a special case. Among the many advantages of using NURBS are their ability to model complicated
geometry with high accuracy, the abundance of algorithms and methods for manipulating NURBS, as well as being
the standard of Computer Aided Design (CAD) [20,21]. The use of NURBS enrichment functions is inspired by a
series of methods that incorporate NURBS in FEM, including isogeometric analysis [22]. Isogeometric analysis pro-
vides a seamless integration with CAD by using NURBS for both the geometrical description of the domain and the
construction of the basis functions of the finite element solution. To handle complex geometries, the domain has to be
decomposed into patches that conform to the curved boundaries. In addition, one must ensure that the mapping and
parameterization in adjoining patch faces are identical in the coarsest mesh and subsequent mesh refinement must also
ensure continuity of the solution between the patches [23]. This may be very challenging in the presence of patches
with complex geometry. To overcome these issues, NURBS-enhanced FEM (NEFEM) has been proposed to handle
curved boundaries [24]. In that method, curved triangular elements are constructed along curved boundaries and han-
dled with NEFEM while other elements are treated with SFEM. Exact geometrical mapping from a reference element
to a curved triangular element is defined using the NURBS description of the curved boundaries. Consistency in the
approximation is also ensured by using Cartesian shape functions, i.e., the degree of polynomial interpolation in phys-
ical space is the same as the degree of the shape functions. Hence the NEFEM overcomes the geometric inaccuracy
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Fig. 1. Schematic of the geometry and boundary conditions of the model problem. The domain consists of a solid Ωs and microchannels Γ f .
The mass flow rates in the microchannels satisfy mass conservation, i.e., ṁ f = ṁ f 1 + ṁ f 2 + ṁ f 3. The direction of the flow at each point of

Γ f is specified by the unit tangent vector t̂. The inlet temperature Tin is prescribed. The inset schematically shows a portion of an unstructured
non-conforming mesh.

in Cartesian FEM and the lack of consistency in p-FEM [24]. However, the method still requires the generation of a
mesh that conforms to the geometry of the curved boundary.

NURBS-based XFEM’s have also been proposed to represent curved integration subdomains exactly by NURBS
[25,26]. For example, the approach described in [25] represents the integration subdomains with NURBS surfaces.
The interfaces are described by level set functions, which are then discretized and approximated by NURBS curves to
generate the NURBS surfaces. In addition, this method requires the use of quadratic or higher-order shape functions as
linear shape functions cannot ensure the continuity of the displacement field across the interface of deformed elements.

In contrast to NEFEM and the methods described in [19,25], the NURBS-based IGFEM proposed hereafter uses
linear shape functions associated with the original nodes of a non-conforming triangular element and places the
enrichment nodes strategically on or near the curved interface, thus reducing the number of new degrees of freedom.
Similar to [25], the integration subdomains are represented by NURBS surfaces. However, unlike [19,25], we use
NURBS enrichment functions instead of enrichment functions based on the level set functions. Therefore, NURBS
representation of a curved interface can be used at the outset, obviating the need for approximation of the curved
interface. Similar to isogeometrical analysis, the key advantage of using NURBS is that the microchannel geometry
can be imported from and exported to CAD programs without loss of geometrical information.

The paper is organized as follows. In Section 2, we describe the problem of interest, i.e., the heat equation with
a line source/sink. In Section 3, we show how NURBS enrichment functions are constructed. We then perform in
Section 4 a detailed convergence study using the method of manufactured solution for semicircular microchannels
and for branching microchannels. Finally, we apply the NURBS-based IGFEM in Section 5 to solve heat transfer
problems in actively-cooled microvascular materials with various microchannel geometries.

2. Problem description

A microvascular material is represented by a domain Ω embedded with microchannels Γ f modeled as line source or
sinks as shown in Fig. 1. This simplification is possible because the microchannel diameters are typically much smaller
than the distance between them and other characteristic dimensions of the problem. Let T , ṁ f , c f and s respectively
denote the temperature field, the mass flow rate and specific heat capacity of the fluid, and the parametric coordinate
along the microchannel in the flow direction. A simple energy balance over a small portion of a microchannel yields
the following expression for the heat flow rate per unit length of the microchannel [27]

q = ṁ f c f
dT

ds
. (1)

This equation assumes that the flow is fully developed, that thermal conduction along the microchannel is negligible,
and that the mixed-mean temperature of the fluid (defined as the average temperature in a cross section weighted by
the volumetric flow rate in that cross-section [27]) is approximately the wall temperature. It also assumes that the
thermal diffusivity is large enough, the flow rate and the temperature gradient along the channel are not too large, and
the ratio of the diameter to length of the channel is small.

Let the boundary of Ω be divided into 2 parts ΓT and Γq where the Dirichlet and Neumann boundary conditions
are specified, respectively. Given the thermal conductivity tensor κ of the solid Ωs , the unit tangential vector field t̂
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indicating the direction of flow in Γ f , and the distributed heat source f , the weak formulation of the problem is: find
the temperature field T satisfying the Dirichlet boundary condition T|ΓT = T̄ such that

a(v, T ) = (v, f )+ (v, q̄)Γq ∀v ∈ V, (2)

where

a(v, T ) =


Ωs

∇v · (κ∇T ) dΩ +


Γ f

vc f ṁ f t · ∇T dΓ ,

(v, f ) =


Ωs

v f dΩ ,

(v, q̄)Γq =


Γq

vq̄ dΓ ,

(3)

and V is the space of weighting functions and q̄ is the prescribed heat flux. Note that the presence of the convective
term in (2) implies that the associated stiffness matrix is not symmetric. Unlike the convective term obtained by
modeling the microchannels with non-zero thickness [16], this term only causes instability in the form of numerical
oscillations at very high flow rates, well beyond the regime of interest. Hence, no numerical stabilization such as
SUPG [28] is needed to stabilize the solution.

3. NURBS-based IGFEM formulation

Let there be n original nodes in the non-conforming mesh. Let the nodal value Ti and the Lagrangian shape function
Ni (x) be associated with a node i . In the IGFEM formulation [16], nen enrichment nodes are added along the interface
to yield the following expression for the finite element solution:

T h(x) =

n
i=1

Ti Ni (x)+

nen
j=1

β jψ j (x), (4)

where ψ j is the enrichment function associated with enrichment node j and β j is the generalized degree of freedom.
Instead of the linear polynomial enrichment functions adopted in [16], we use in this work NURBS enrichment func-
tions, the construction of which is explained in the remainder of this section. We begin by briefly introducing NURBS
curves and surfaces, covering only the needed concepts and terminologies. The reader is referred to [20,21,23] for a
detailed explanation of NURBS relevant to this work.

A NURBS curve is defined by

C(ξ) =

n
i=1

Bi R
p
i (ξ), (5)

where Bi is the i th control point and R p
i is the degree p rational B-spline basis function associated with the control

point. The basis functions R p
i are defined as

R p
i (ξ) =

N p
i (ξ)wi

n
j=1

N p
j (ξ)w j

, (6)

where N p
i are B-spline basis functions, which can be generated by a recursion formula [20,21,23]. The shape of the

curve can be changed by adjusting the location of the control points and the weights wi , thus allowing the exact
representation of complex geometries that cannot be represented by B-spline curves such as conics. Moreover, the
geometry is also controlled by a set of n + p + 1 coordinates/knots/break points in parametric space called the knot
vector ξ = {ξ1, ξ2, . . . , ξn+p+1}. The knot vector determines the form, support and smoothness of N p

i . The curve is
only defined on the interval ξ ∈ [ξ1, ξn+p+1]. In this work, only open knot vectors, which are standard in CAD [21],
are considered. In an open knot vector, the first and last knots appear p + 1 times.
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A NURBS surface is defined analogously by

S(ξ, η) =

n
i=1

m
j=1

Bij R p,q
i, j (ξ, η), (7)

where

R p,q
i, j (ξ, η) =

N p
i (ξ)M

q
j (η)wi, j

n
k

m
l

N p
k (ξ)M

q
l (η)wk,l

. (8)

The set of control points {Bij} is called the control net and associated with each control point is a weight wi, j . The
rational basis functions R p,q

i, j consist of tensor products of 1D B-spline basis functions N p
i (ξ) and Mq

j (η). Instead of
a single knot vector, two knot vectors ξ = {ξ1, ξ2, . . . , ξn+p+1} and η = {η1, η2, . . . , ηm+q+1} are needed to define
the surface, which is only defined in [ξ1, ξn+p+1] × [η1, ηm+q+1].

The construction of the NURBS enrichment function consists of four steps:

1. Finding the intersections between the microchannels and the non-conforming elements.
2. Extracting the NURBS representation of a segment of a microchannel in an element.
3. Constructing the NURBS representation of the integration subdomains of a parent element, defined as an element

cut by a microchannel.
4. Using some of the rational basis functions of the NURBS representation of the integration subdomains as

enrichment functions.

These four steps are summarized next, followed by a description of the integration scheme.

3.1. Intersection between the microchannels and the elements

In this work, the non-conforming meshes are made of triangular elements. Due to the many different ways in which
a curved microchannel can intersect an element, we restrict our work to cases in which each edge of an element inter-
sects with each microchannel at most once. When this condition is not satisfied, it is an indication that the curvature
of the microchannel is likely too high in the region containing the element. In this case, local mesh adaptation such as
mesh refinement, mesh reconnection and mesh movement [29] can be carried out until the condition is satisfied. We
also assume that at most one branch point appears on the boundary or the interior of an element.

The intersection between the edge of an element and a curved microchannel is found by using a non-linear solver.
The search direction is found by the Levenberg–Marquardt algorithm [30]. To drastically reduce the number of
iterations required to find the solution as well as ensuring that the non-linear solver does not miss the solution due to
a poor initial guess, the curved microchannel is discretized into a series of linear segments to obtain an initial guess
close to the true solution (if it exists). The end point of a linear segment closest to the edge is taken as the initial guess.
To prevent unnecessary work in finding the intersections when they do not exist, a convex hull tightly containing the
NURBS curve and determined by the control points of the NURBS curve can be used [20]. An edge that lies outside
the convex hull is immediately excluded from consideration.

3.2. Extraction of NURBS curve segment

Suppose a NURBS curve of degree p with knot vector ξ = {ξ1, ξ2, . . . , ξn+p+1} intersects an element at ξ =

a ∈ (ξk, ξk+1] and ξ = b ∈ (ξl , ξl+1] with b > a. Using Fig. 2 as illustration, the NURBS curve is defined by the
control points B1, . . .B4 and the knot vector ξ = {0, 0, 0, 0.5, 1, 1, 1}. Let us also assume in this illustrative example
that the intersections with the element occur at ξ = 0.39 and 0.65 on the NURBS curve. The curve segment can be
extracted in the following manner:

1. Insert knots at ξ = a and ξ = b using a knot insertion algorithm described in [21,22] until there are p + 1 knots
at ξ = a and ξ = b in the resulting knot vector. The knot insertion algorithm adds a control point with every knot
insertion and the resulting curve is exactly the same as the original curve with the same smoothness as before. After
the multiple knot insertions, the resulting knot vector is ξ ′

= {0, 0, 0, 0.39, 0.39, 0.39, 0.5, 0.65, 0.65, 0.65, 1, 1, 1}
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a b c d

Fig. 2. Extraction of a NURBS curve segment and construction of integration subdomains. When there is no branching in the interior of the
element, (a) find intersections of a curve with the element edges, (b) perform knot insertions, (c) extract the curve segment and (d) construct the
integration subdomains.

and there will be two coincident control points B′

3,B′

4 exactly at the intersection corresponding to ξ = a and two
other coincident control points B′

7,B′

8 at ξ = b. Let imin = min(i) such that ξ ′

i ≥ a and imax = max(i) such that
ξ ′

i ≤ b. In general the pairs of coincident control points are B′

imin−1,B′

imin
and B′

imax−p−1,B′

imax−p.
2. The curve segment within the element can then be represented exactly by the control points B′

4 to B′

7 and the knot
vector ξ = {0.39, 0.39, 0.39, 0.5, 0.65, 0.65, 0.65}. In general, the control points of the extracted curve segment
are B′

i , i = imin, . . . , imax − p − 1 and the knot vector is ξ = {ξ ′

imin
, . . . , ξ ′

imax
}.

Note that the weights can be extracted in exactly the same fashion as the control points.

3.3. Construction of NURBS representation of an integration subdomain

Two general cases need to be handled given the restriction that each edge of an element has at most one intersection
with a microchannel. The first case occurs when there is no branching in the parent element as shown in Fig. 2. To
construct the NURBS enrichment function, we need the NURBS representations of the integration subdomains shown
in Fig. 2(d). The NURBS representation of the triangular integration subdomain (C1) is given by

SC1(ξ, η) =

n
i=1

2
j=1

Pij R
p,1
i, j (ξ, η), (9)

with n = 4, p = 2, P11 = B′

4, P21 = B′

5, P31 = B′

6, P41 = B′

7 and the other control points coinciding with the apex
of C1. The NURBS representation of the quadrilateral integration subdomain (C2) is given by

SC2(ξ, η) =

n
i=1

2
j=1

Qij R̃ p,1
i, j (ξ, η), (10)

with n = 4, p = 2, Q12 = B′

4, Q22 = B′

5, Q32 = B′

6, Q42 = B′

7 and the other control points are equally spaced
along the bottom edge. For both (9) and (10), the knot vector ξ is the knot vector of the extracted curve segment, i.e.,
ξ = {0.39, 0.39, 0.39, 0.5, 0.65, 0.65, 0.65} in this example and the other knot vector is η = {0, 0, 1, 1}. It is worth
noting that as long as each microchannel does not intersect an element edge more than once, the method described here
can be extended readily to the case of multiple microchannels in an element by splitting the parent element into more
than two integration subdomains with some of the integration subdomains having more than one curved boundaries.

The second case involves a branching point in the interior of the non-conforming element as shown in Fig. 3. As
before, the intersection points are determined and the curves are extracted. The quadrilateral integration subdomains
C3 and C4 as shown in Fig. 3(b) have to be further triangulated to produce enrichment functions that have inter-
element continuity. Details on the definition of the enrichment functions and the integration scheme for this case are
provided in the next section.

3.4. Construction of NURBS enrichment functions

The central idea of the construction of NURBS enrichment functions is to use the control points describing the
microchannel edge of the integration subdomains as enrichment nodes and the basis functions associated with these
control points as enrichment nodes in the same spirit as the original IGFEM. The choice of these basis functions as
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a b c

Fig. 3. When there is branching in the interior of the element, (a) intersections are determined, (b) curve segments are extracted, (c) quadrilateral
subdomains are triangulated.

a b c

Fig. 4. (a) A pair of triangular elements cut by a circular arc. (b) and (c): The enrichment functions for enrichment nodes B2 and B1, respectively.

enrichment functions is straightforward and is motivated by the fact that the enrichment functions have C0 continuity
across the integration subdomains and across the elements as we will explain later. Moreover, the discontinuous
gradient in an enrichment function occurs exactly on the channel. We again refer to the example in Fig. 2 for
illustration. Enrichment nodes are introduced at the control points along the microchannel, i.e., at B′

4, . . . ,B′

7. The

enrichment functions associated with these nodes are R
2,1
1,1, R

2,1
2,1, R

2,1
3,1 and R

2,1
4,1 in C1 and R̃2,1

1,2 , R̃2,1
2,2 , R̃2,1

3,2 and R̃2,1
4,2

in C2.
The enrichment function associated with an interior enrichment node such as B′

5 in Fig. 2 or B2 in Fig. 4(a) is
continuous across the integration subdomains because the subdomains share the same curve segment used to construct
their NURBS surfaces. It is also continuous across the elements simply because it vanishes at the edges of the element
as shown in Fig. 4(b). That the enrichment function associated with an exterior enrichment node is continuous across
elements can be explained by an example. Consider the enrichment node B′

4 in Fig. 2. The basis functions associated
with B′

4 of the NURBS surfaces C1 and C2 vary linearly along the edges P12B′

4 and Q11B′

4, respectively, are unity
at B′

4 and vanish along the other edges of the element. Similarly, the basis functions of the integration subdomains
in the element adjacent to the edge P12Q11 have the same property by construction. The same argument applies to
enrichment node B1 in Fig. 4(a). Hence these enrichment functions also have inter-element continuity, which can
clearly be observed in Fig. 4(c).

The construction of enrichment function for an element with a branching point is the same as before, except
that care must be taken to ensure that the enrichment function is continuous between elements. If two adjacent
edges of a quadrilateral integration subdomain are described by curve segments with more than 2 control points,
the enrichment function constructed in this manner is not continuous across the element. For illustration, consider
integration subdomain C3 of Fig. 3(b), the basis functions associated with P are non-linear along the straight edge PA.
However, the basis function associated with P of the NURBS surface describing the adjacent integration subdomain in
the neighbor element is linear along PA. Hence the enrichment function is discontinuous. To prevent this problem, the
quadrilateral integration subdomain has to be further subdivided as shown in Fig. 3(c). The basis function associated
with P of integration subdomain C ′

3 is then a linear function along edge PA and inter-element continuity is ensured.

3.5. Integration over a parent element

Work on the optimal quadrature rule for NURBS is still an active area of research [31]. It is known that Gaussian
quadrature is not an optimal rule as it does not utilize the smoothness of the NURBS function between knot spans [31].
An optimal rule called the “half-point rule”, which corresponds to one integration point every two basis functions
regardless of degree has been developed for the exact integration of B-splines in 1D [31]. The half-point rule will
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a b

Fig. 5. (a) A triangular domain with one curved edge for the numerical integration study. (b) The relative error of the numerical integration of (12)
using Gaussian quadrature.

result in huge savings in isogeometric analysis because NURBS quadrature is carried out everywhere in the domain.
In our case, we only need to perform quadrature of NURBS in enriched elements and hence an optimal rule is not
critical to our method. Because the “half-point rule” has not been tested on piecewise rational polynomials and for
simplicity, we use Gaussian quadrature.

Similar to the original IGFEM [16], integration is performed separately in each integration subdomain. However,
when using a NURBS enrichment function, two Jacobians are needed [23]. The geometrical mapping from the
physical space to the NURBS parametric space in (9) or (10) is used to calculate the first Jacobian. The derivative of
rational B-splines can be calculated according to the method described in [20]. A linear mapping from a knot span to
the usual local coordinate space should be defined so that Gaussian quadrature can be performed. This mapping gives
rise to the second Jacobian.

Given a knot vector ξ = {ξ1, ξ2, . . . , ξn+p+1}, the knot spans are the sub-intervals [ξi , ξi+1]. The Gaussian quadra-
ture is applied separately in each knot span with non-zero width. For example, if the integration subdomain is described
by a NURBS with knot vectors ξ = {0, 0, 0, 0.5, 1, 1, 1} and η = {0, 0, 1, 1} and the number of Gauss points per knot
span in the ξ - and η-directions are nξ and nη, respectively, then the total number of Gauss points is 2nξ × nη. The
number of Gauss points per knot span depends on the degree of the NURBS surface in the direction of the knot vector.
In general the higher the degree, the higher the number of Gauss points per knot span. In this subsection, we perform
a simple study on the number of Gauss points required for integration specific to our work. The appropriate selection
of quadrature rule in the general case warrants a separate study on its own.

Consider a triangular integration subdomain as shown in Fig. 5(a) with one curved edge. Consider a typical term
in our element stiffness matrix given by

[0,1]2
∇

T
x ψi (ξ, η)∇xψ j (ξ, η)J (ξ, η)dξdη, (11)

where ψi , ψ j are enrichment functions and J (ξ, η) is the determinant of the Jacobian from the physical space to the
NURBS parameter space. A common practice when integrating such a term in isogeometric analysis is to assume
that the Jacobian is a constant and if ψi and ψ j are rational piecewise polynomials, that the denominator varies
slowly compared to the numerator that it can be assumed constant. This practice is based on standard FEM, where the
integration order required is deduced by assuming an undistorted element.

However, in our study, we do not assume that the Jacobian is constant. Because the derivative of a NURBS basis
function with respect to physical space in a curved integration subdomain results in an unknown function type, we
assume that the derivative has the same degree as the basis function itself. Note that this has also been done for
isogeometric analysis when determining an appropriate integration order for the stiffness matrix [31]. Hence in lieu
of the term in (11), we perform an integration study over a triangular integration subdomain with a curved edge
represented by NURBS as shown in Fig. 5(a) on a term given by

[0,1]2
ψ(ξ, η)2 J (ξ, η)dξdη, (12)

where ψ is chosen as one of the enrichment functions associated with the interior enrichment nodes. The curved edge
is a quadratic B-spline, a cubic B-spline and two rational NURBS circular arcs of different radii. The control points
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of the curves can be found in Table A.1 of Appendix. The different radii are chosen based on the radius to mesh size
ratios of the semicircular channel problem in Section 4.1.

Fig. 5(b) shows how the relative error changes with respect to the number of Gauss points in the direction ξ , nξ
while fixing nη. ξ and η are chosen to be in the directions of the curved and straight edges, respectively. Because
the basis function in η for the B-splines is a linear piecewise polynomial, nη = 2 is the necessary minimal number
of Gauss points required to integrate (12) exactly. Fig. 5(b) shows that nξ = 4 and 6 are required to integrate the
quadratic and cubic B-splines, respectively. This is expected because the integrand in (12) has degrees 6 and 10 for
quadratic and cubic B-splines, respectively.

On the other hand, the quadrature rule for a rational NURBS is not straightforward. We base our selection of
number of quadrature points on the finite element solution error in Section 4.1. For the NURBS curves, nη = 4 is
chosen because nη = 2 or 3 will limit the relative error of the integration to between 10−2 and 10−3, which may
be insufficient when the radius of curvature is high. Fig. 5(b) shows that the relative error at nξ = 4 for the smaller
radius of r = 1.6 is slightly greater than 10−4, which is smaller than the finite element solution error presented in
Section 4.1. As the mesh size becomes smaller, the ratio of the radius to the mesh size becomes larger and the relative
error of the quadrature decreases. For the larger radius of r = 8 and at nξ = 4, the relative error decreases to a value
slightly greater than 10−6, which is much smaller than the finite element solution error. Therefore, we recommend a
nξ = nη = 4 quadrature rule for a radius to mesh size ratio greater than 1.6. The numerical integration study here is
also valid for a quadrilateral element with one curved edge.

Other than the usual first term in the stiffness matrix of (2), a second term arises due to the contribution of the
microchannels. In an integration subdomain, this integration is only performed over the edge of the subdomain
coinciding with a microchannel. Since there are two integration subdomains sharing a microchannel, the contribution
of this integral is halved for each subdomain to avoid double counting.

3.6. Computational cost

The creation of meshes that conform to complex microstructural details such as material interfaces and embedded
microchannels often represents a challenging and time-consuming task. This is especially the case in 3D settings
and/or for problems that require the simulation of multiple realizations of the virtual microstructure such as in
multiscale modeling (for which multiple realizations are needed to extract some of the statistics of the homogenized
response) or mesoscale shape optimization (during which multiple simulations of the evolving microstructure have to
be performed). The ability to perform multiple simulations with a single non-conforming mesh, thereby avoiding the
complexity and cost of meshing, is undoubtedly one of the attractive features of the NURBS-based IGFEM scheme.
Although it often represents the major time consuming part of a finite element analysis, the mesh generation process
does not usually enter the assessment of the efficiency of a solution method. It is therefore difficult to perform a direct
comparison between the NURBS-based IGFEM and the standard FEM.

As far as the solution step itself, the key computational costs involved with the IGFEM are associated with
(i) finding the intersection points, (ii) constructing the enrichment functions, (iii) assembling the stiffness matrix and
(iv) solving the system of equations. With regard to the first operation, efficient algorithms to find the intersection
of NURBS with element edges and faces, such as implicitization, subdivision and Bézier clipping, are widely
available [32–35]. Furthermore, finding the intersection points and constructing the enrichment functions can be
readily parallelized. While the numerical integration associated with the computation of the stiffness matrix in the
IGFEM is more expensive than its standard FEM counterpart, this step can be further improved as the Gaussian
quadrature rule for integration of NURBS is not optimal because it does not utilize the smoothness of the curve
between knot spans [31]. It should be noted that, unlike isogeometric analysis, NURBS-based IGFEM only requires
integration of NURBS in the enriched elements, which typically represent a relatively small fraction of the entire mesh.
In most large size problems, the solution of the resulting system of equations constitutes by far the most time-intensive
part of the analysis.

4. Convergence study

We use the method of manufactured solutions for a problem with a curved microchannel without branching and a
second problem with straight branched microchannels to study the convergence and accuracy of IGFEM with NURBS
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a b

Fig. 6. (a) Domain geometry for Verification Problem 1. (b) 3D surface plot of the analytical solution for k = 3, α = 90 and ro = 0.4. The
temperature has been normalized by the maximum temperature in the domain, Tmax.

enrichment functions. Dirichlet boundary conditions are imposed at the boundary using the manufactured solutions.
The study is carried out using the L2- and H1-norms of the error defined as

∥T − T h
∥L2(Ω) =


Ω
(T − T h)2dΩ , (13)

and

∥T − T h
∥H1(Ω) =


Ω


(T − T h)2 +


∥∇T − ∇T h∥2

2

dΩ . (14)

We also study the effect of curvature on the relative error of the solution. The problems in the remaining sections
involve a homogeneous solid of uniform thermal conductivity κ , with the weak discontinuity in the temperature field
solely due to the presence of the microchannels.

4.1. Verification Problem 1: semicircular channel

Consider a semicircular channel of radius ro centered at (L/2, 0)with mass flow rate ṁ f and uniform heat capacity
c f in a rectangular domain of length L and width L/2 as shown in Fig. 6(a). The semicircle can be described by the
control points (L/2 + ro, 0), (L/2 + ro, ro), (L/2, ro), (L/2 − ro, ro), (L/2 − ro, 0) with corresponding weights
1, 1/

√
2, 1, 1/

√
2, 1 and knot vector {0, 0, 0, 1, 1, 2, 2, 2}. By choosing a characteristic temperature (Tmax) and a

characteristic length (L), the weak form (2) can be expressed in terms of a single dimensionless parameter given by

α =
ṁc f

κ
. (15)

If the following distributed heat source is applied to Ωs :

f (r, φ) =


−(k2

+ λ2)r2
o

 r

ro

k−2e−λφ r < ro,

−(k2
+ λ2)r−2

o

ro

r

k+2e−λφ r > ro,

(16)

with the cylindrical coordinates (r, φ) shown in Fig. 6(a), the solution to (2) is given by

T (r, φ) =


 r

ro

ke−λφ r ≤ ro,ro

r

ke−λφ r > ro,

(17)

where λ =
2k
α

. The solution is thus described by the two parameters k and α. As apparent in Fig. 6(b), the temperature
gradient is discontinuous across the microchannel but is continuous along the microchannel. The temperature decays
slowly in the counter-clockwise direction due to the relatively small value of λ.

Some of the structured non-conforming meshes and the unstructured conforming meshes used in this study are
shown in Fig. 7. Unstructured non-conforming meshes have also been used for the NURBS-based IGFEM. By setting
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a b

c d

Fig. 7. Non-conforming and conforming meshes for Verification Problem 1. (a) and (b): Coarsest non-conforming and conforming meshes. (c) and
(d): Finer non-conforming and conforming meshes.

Fig. 8. Comparison of IGFEM and SFEM solutions with analytical solution along the line y = 0.2L (dashed line in Fig. 6(a)) for different number
of elements nel.

k = 3 and α = 90, the solutions obtained from the two coarsest structured non-conforming mesh are compared with
those obtained from the two coarsest conforming mesh along the line y = 0.2L in Fig. 8. It can be seen that IGFEM
is able to capture the two weak discontinuities at x = 0.15L and 0.85L with a relatively coarse mesh and that no
significant difference between IGFEM and SFEM is observed as the mesh becomes finer.

The errors in the L2- and H1-norms for both IGFEM and SFEM with respect to the minimum edge length for
structured meshes or average edge length for unstructured meshes h are compared in Figs. 9(a), (c). As alluded to
in Fig. 8, the solution obtained by IGFEM is significantly more accurate for coarse meshes. By fitting the model
∥T − T h

∥ = Ahβ to the last 4 data points, the asymptotic convergence rates of IGFEM with unstructured mesh in the
L2 norm and H1 norm are 1.95 and 0.93, respectively. With structured mesh, the convergence rates are 1.85 and 0.94
respectively. If the last two data points were used, the convergence rates are 1.93 and 0.96, respectively. The slightly
lower accuracy of the structured mesh is due to the higher percentage of very slender integration subdomains, which
causes problem in the derivative of the temperature. Note that this problem also occurs in GFEM/XFEM [12,36].
Unlike conventional GFEM for sharp thermal gradient [4], the accuracy of IGFEM is essentially independent of the
mesh orientation. On the other hand, the convergence rates of SFEM are 2.09 and 1 respectively. Due to the slightly
higher convergence rate of SFEM, its accuracy will eventually become better than IGFEM as the mesh becomes finer.
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a b

dc

Fig. 9. Convergence study: L2 (top) and H1 (bottom) errors for Verification Problem 1 (with ro = 0.4L , k = 3 and α = 90).

a

c

b

d

Fig. 10. Effect of curvature on the L2 and H1 relative errors for Verification Problem 1 with semicircular channels of different radii, k = 3 and
α = 90.

The mesh size at which this happens, ho will become smaller as the microchannel effect becomes more important,
i.e., as α and/or k increase.

A comparison of the error of IGFEM and that of SFEM with respect to the number of degrees of freedom (total
number of nodes less the prescribed nodes) is also shown in Figs. 9(b), (d). The accuracies of both methods are
comparable to each other for a given number of dofs, with the slightly higher convergence rate of IGFEM due to the
strategic placement of the dofs near the microchannel. However, SFEM has a slightly better accuracy compared to
IGFEM for a given dof due to the greater number of elements near the channel and the fact that the total error does
not just come from elements cut by the channel but also elements near the channel.

The effect of curvature on the relative error of the solution (∥T − T h
∥/∥T ∥) is also investigated using IGFEM with

a structured mesh by changing the radius of the semicircular channel. Fig. 10 shows that the relative error increases
with curvature 1/ro but the convergence rate is essentially unchanged as expected.

4.2. Verification Problem 2: straight channels with branching

Consider the network of branched straight channels in a square domain of length L illustrated in Fig. 11(a). The
junction is located at xo = yo = L/2. A flow ṁ1 enters the domain from point (xo, 0) and splits into 3 microchannels
with flow rates ṁ2, ṁ3, ṁ4 such that ṁ1 = ṁ2 + ṁ3 + ṁ4. Let the dimensionless parameters defined in (15) be
αi = ṁi c f /κ for channels i = 1, 2, 3, 4.
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a b

Fig. 11. (a) Domain geometry of Verification Problem 2. (b) 3D surface plot of the analytical temperature field. The temperature is normalized by
the maximum temperature in the domain, Tmax.

a b c d

Fig. 12. Non-conforming and conforming meshes for Verification Problem 2. (a) and (b): Coarsest non-conforming and conforming meshes. (c)
and (d): Finer non-conforming and conforming meshes.

For the following distributed heat sources:

f (x, y) =


−C(λ2

1 + λ2
2)e

λ2x−λ1 y on RA,

−C(λ2
1 + λ2

3)e
λ2xo+λ3(xo−x)−λ1 y on RB,

−C(λ2
2 + λ2

4)e
λ2x+λ4(yo−y)−λ1 yo on RC ,

−C(λ2
3 + λ2

4)e
λ2xo+λ3(xo−x)+λ4(yo−y)−λ1 yo on RD,

(18)

where the subdomains RA, RB, RC and RD are shown in Fig. 11(a), the solution to (2) with the appropriate Dirichlet
boundary conditions is given by

T (x, y) =


Ceλ2x−λ1 y on RA,

Ceλ2xo+λ3(xo−x)−λ1 y on RB,

Ceλ2x+λ4(yo−y)−λ1 yo on RC ,

Ceλ2xo+λ3(xo−x)+λ4(yo−y)−λ1 yo on RD,

(19)

provided the following relations are satisfied: λ1α1 = λ4α4 = λ2 + λ3, λ2α2 = λ3α3 = λ4 − λ1, α1 = α2 + α3 + α4.
The problem is thus defined by 3 parameters, for which we choose α1 = 10, α4 = 0.4 and λ2 = 20. Hence λ1 = 4,
λ3 = 20, λ4 = 100, α2 = α3 = 4.8. Fig. 11(b) shows the exact temperature field. Steep jumps in thermal gradient are
observed along channels i = 2, 3, 4.

We use NURBS with different number of control points n and degree p to describe the straight channels as shown in
Table A.2 given in the Appendix. The purpose of doing this is to verify that our method works even for different degree
NURBS. Note that the degree of the NURBS enrichment is given by the degree of NURBS curve used to describe
the geometry of the microchannel. In general, a lower degree NURBS curve can be integrated more accurately with a
given Gaussian quadrature scheme.

Some of the non-conforming and conforming meshes used in this problem are shown in Fig. 12. The solutions
obtained with IGFEM with n = 2, p = 1 and SFEM are compared in Fig. 13, showing that IGFEM achieves a
significantly more accurate solution for very coarse meshes.

The error of the IGFEM solution with different n and p is compared with that of SFEM in Figs. 14(a), (c). In spite
of the suboptimal convergence rate for large element size h, IGFEM is significantly more accurate than SFEM for
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Fig. 13. Comparison of IGFEM and SFEM solutions along the microchannels x = 0.5L (left) and y = 0.5L (right) in Fig. 11(a) for different
number of elements nel.

a

c

b

d

Fig. 14. Convergence analysis: L2 and H1 errors for Verification Problem 2. Effect of the degree of NURBS, p, and the number of control points
of each microchannel, n, on the L2 and H1 errors.

moderate to large h. The asymptotic convergence rates of IGFEM with respect to h in the L2 and H1 norms using
the last two points are 2.04 and 1.03, respectively, regardless of n and p. This result shows that the NURBS-based
IGFEM is able to handle NURBS curves of different degrees.

For a given number of dofs, the IGFEM with n = 2, p = 1 has slightly better accuracy than the SFEM. However,
for straight channels, using a higher number of enrichment nodes or degree of enrichment functions does not improve
the accuracy and incurs greater computational cost.

5. Applications

As indicated in the Introduction, recent advances in the manufacturing of microvascular materials allow for very
complex curved microchannels to be embedded in polymeric and composite components [1,18]. In the examples
presented hereafter, we show that IGFEM is capable of handling many types of complex microchannel configurations.

5.1. Application 1: wavy channel in active cooling of microvascular materials

Inspired by the microchannel design study summarized in [37], we apply the NURBS-based IGFEM to a L × L/2
domain with a curved microchannel as shown in Fig. 15(a). The microchannel is described by a degree-2 NURBS
with the control points (0, 0.3), (0.2, 0.045), (0.4, 0.455), (0.6, 0.045), (0.8, 0.455), (1, 0.2) and knot vector
{0, 0, 0, 1, 2, 3, 4, 4, 4}. Note that the coordinates of the control points are expressed in terms of the characteristic
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a b

dc

Fig. 15. (a) Domain geometry and boundary conditions for Application Problem 1. (b) Non-conforming mesh used by IGFEM to produce the
temperature field in (c). (d) Temperature along the line y = 0.25L (dashed line in (a)). The parameters are α = ṁc f /κ = 10 and Tin = To.

length L and all weights associated with the control points are unity. A heat flux qo is applied along the bottom edge
of the domain and the temperature is fixed (T = To) along the top edge. The temperature at the inlet of the channel,
Tin is prescribed. The solution is expressed in terms of the dimensionless temperature

T ∗
=

2κ
qo L

(T − To), (20)

where qo L
2κ + To is the maximum temperature in the absence of the microchannel. The temperature distribution in

Fig. 15(c) obtained using the mesh in Fig. 15(b) shows that fluid flow in the microchannel reduces the maximum
temperature relative to that without the microchannel.

The IGFEM solutions are compared with SFEM solutions obtained with coarser conforming meshes of the same
sizes as the structured meshes and a very fine conforming mesh in Fig. 15(d) along the line y = 0.25L . Both IGFEM
and SFEM are able to obtain the solution with rather coarse meshes. The reference maximum temperature is 0.604.
For IGFEM, the predicted maximum temperature with 100 elements has a relative error of 1.3% compared to 3.14%
for SFEM with 108 elements and the same mesh size.

5.2. Application 2: serpentine microchannel

Motivated by the use of serpentine channels employed in battery cooling plates [38], we use the IGFEM thermal
solver to analyze the temperature distribution in a thin microvascular domain represented by a square domain of length
L with a serpentine microchannel as shown in Fig. 16(a) with different flow rates, ṁ f = ṁ, 2ṁ, 4ṁ. The microchannel
is represented by a single quadratic NURBS curve with control points (0, 0.1), (0.89, 0.039), (0.89, 0.69), (0.3, 0.69),
(0.3, 0.5), (0.7, 0.6), (0.6, 0.25), (0.19, 0.25), (0.19, 0.98), (1, 0.9) and knot vector {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}.
As before, the weights associated with the control points are unity. All sides of Ω are insulated except at one point
where the temperature of the microchannel at the inlet, Tin is prescribed. The heat flux on the flat face of Ω is modeled
as a uniform distributed source, i.e., f (x, y) = Qb in (2). The solution is expressed in terms of a dimensionless
temperature defined by

T ∗
=

T − Tin

Tc
, (21)

where the characteristic temperature is defined as Tc = Qb L2/κ . Hence, the dimensionless distributed heat source,
Qb L2/κTc is 1. The effect of increasing the flow rate is clearly seen in Figs. 16(b)–(d).
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a

c

b

d

Fig. 16. (a) Domain geometry and boundary conditions of a material with a serpentine microchannel and uniform body source, Qb . The temperature
fields obtained using a structured mesh with 3200 elements for (b) ṁ f = ṁ, α = 2.5, (c) ṁ f = 2ṁ, α = 5 and (d) ṁ f = 4ṁ, α = 10, where
α = ṁ f c f /κ .

5.3. Application 3: embedded network of wavy channels

The design optimization of the microchannels in a microvascular material to minimize objective functions such
as global flow resistance, void volume fraction and maximum temperature has been a subject of a number of studies
[5,6,37,39]. One notable result is that to minimize the global flow resistance, it is more efficient to bathe a region with
a single stream of microchannels with branching than multiple streams of microchannels [39]. In this final application,
we replace the single microchannel in Fig. 15(a) with a network of microchannels as shown in Fig. 17(a). The knot
vectors and the control points are shown in Table A.3 given in the Appendix. A single stream of mass flow rate ṁ
is split into four microchannels each having the same mass flow rate of ṁ/4. The solution is expressed in terms of
the dimensionless temperature defined in (20). The temperature distribution in Fig. 17(c) obtained using the non-
conforming mesh in Fig. 17(b) clearly shows the cooling effect of the microchannels.

A comparison of the IGFEM and SFEM solutions along the line y = 0.25L in Fig. 17(d) shows that both methods
with relatively coarse meshes agree with the reference solution obtained with a fine conforming mesh. A closer look at
the spike at around x = 0.9L close to a branching point shows that IGFEM is able to model the spike more accurately
than SFEM. Using the maximum temperature of 0.597 provided by the reference solution as the reference, the error of
the maximum temperature predicted by IGFEM with 400 elements is 0.088%, compared to 2.3% predicted by SFEM
with 452 elements.

6. Conclusions

The formulation and implementation of a NURBS-based IGFEM have been presented for the thermal analysis of
a material containing curved microchannels based on a simplified model of the cooling or heating effect of the em-
bedded network. The method is capable of preserving the exact geometrical description of the curved microchannels.
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c

b

d

L

Fig. 17. (a) Domain geometry and boundary conditions for Application Problem 3. (b) Non-conforming mesh used by IGFEM solver to obtain
the temperature field shown in (c). (d) The temperature along the line y = 0.25L (dashed line in (a)). The parameters are α = ṁc f /κ = 10,
ṁi = ṁ/4, (i = 1, 2, 3, 4), Tin = To.

Table A.1
Knot vectors and control points for the numerical integration study in Section 3.5. The last two NURBS
curves are circular arcs of radii 1.6 and 8, respectively.

n p Knot vector Control points Weights

4 2 {0, 0, 0, 0.5, 1, 1, 1} (0, 0), (0.3, 0.25), (0.7, 0.05), (1.0, 0.0) 1, 1, 1, 1
5 3 {0, 0, 0, 0, 0.5, 1, 1, 1, 1} (0, 0), (0.2, 0.2), (0.5, 0.05), (0.8, 0.15), (1.0, 0.0) 1, 1, 1, 1, 1
3 2 {0, 0, 0, 1, 1, 1} (0, 0), (0.5, 0.1645), (1, 0) 1, 0.950, 1
3 2 {0, 0, 0, 1, 1, 1} (0, 0), (0.5, 0.03131), (1, 0) 1, 0.998, 1

Table A.2
Knot vectors and control points for Verification Problem 2. The microchannels are described
by different degree NURBS, p and different number of control points, n. The coordinates are
expressed in terms of the characteristic length L . All weights are unity.

n p Knot vector Channel Control points

2 1 {0, 0, 1, 1} 1 (0.50, 0), (0.50, 0.50)
2 (0.50, 0.50), (0, 0.50)
3 (0.50, 0.50), (1, 0.50)
4 (0.50, 0.50), (0.50, 1)

3 2 {0, 0, 0, 1, 1, 1} 1 (0.50, 0), (0.50, 0.25), (0.50, 0.50)
2 (0.50, 0.50), (0.25, 0.50), (0, 0.50)
3 (0.50, 0.50), (0.75, 0.50), (1, 0.50)
4 (0.50, 0.50), (0.50, 0.75), (0.50, 1)

4 3 {0, 0, 0, 0, 1, 1, 1, 1} 1 (0.50, 0), (0.50, 0.15), (0.50, 0.35), (0.50, 0.50)
2 (0.50, 0.50), (0.35, 0.50), (0.15, 0.50), (0, 0.50)
3 (0.50, 0.50), (0.65, 0.50), (0.85, 0.50), (1, 0.50)
4 (0.50, 0.50), (0.50, 0.65), (0.50, 0.85), (0.50, 1)

It is also able to handle branching in the interior of an element. The enrichment functions are simply constructed
from some of the basis functions of the NURBS description of the integration subdomains. It has been shown that
NURBS-based IGFEM obtains close-to-optimal rate of convergence even for curved microchannel and is more ac-
curate than SFEM for coarse meshes. The method was then applied to solve a number of problems with complex
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Table A.3
Knot vectors and control points for Application Problem 3 expressed in terms of the characteristic length L . All
weights are unity.

Channel Knot vector Control points

A {0, 0, 1, 1} (0, 0.300), (0.110, 0.255)
B {0, 0, 1, 1} (0.890, 0.255), (1, 0.200)
1 {0, 0, 0, 1, 2, 3, 3, 3} (0.110, 0.255), (0.300, 0.500), (0.500, 0.325), (0.700, 0.500), (0.890, 0.255)
2 {0, 0, 0, 1, 2, 3, 3, 3} (0.110, 0.255), (0.300, 0.375), (0.500, 0.250), (0.700, 0.375), (0.890, 0.255)
3 {0, 0, 0, 1, 2, 3, 3, 3} (0.110, 0.255), (0.300, 0.125), (0.500, 0.250), (0.700, 0.125), (0.890, 0.255)
4 {0, 0, 0, 1, 2, 3, 3, 3} (0.110, 0.255), (0.300, 0), (0.500, 0.175), (0.700, 0), (0.890, 0.255)

microchannel configurations. The ability of the method to provide a good approximation of the thermal field for com-
plex microchannel networks with a relatively coarse non-conforming mesh is expected to be especially attractive in
its 3D implementation currently under development.
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[25] G. Haasemann, M. Kästner, S. Prüger, V. Ulbricht, Development of a quadratic finite element formulation based on the XFEM and NURBS,

Internat. J. Numer. Methods Engrg. 86 (2011) 598–617.
[26] G. Legrain, A NURBS enhanced extended finite element approach for unfitted CAD analysis, Comput. Mech. 59 (2013) 913–929.
[27] W.M. Kays, M.E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill, 1993.
[28] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flow with particular emphasis on

the incompressible Navier–Stokes equation, Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259.
[29] W.G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, M.-G. Vallet, Anisotropic mesh adaptation: towards user-independent,

mesh-independent and solver-independent CFD. Part I: general principles, Internat. J. Numer. Methods Fluids 32 (2000) 725–744.
[30] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431–441.
[31] T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg.

199 (2010) 301–313.
[32] J.M. Lane, R.F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans.

Pattern Anal. Mach. Intell. 2 (1980) 35–46.
[33] P.A. Koparkar, S.P. Mudur, A new class of algorithms for the processing of parametric curves, Comput.-Aided Des. 15 (1983) 41–45.
[34] T.W. Sederberg, S.R. Parry, Comparison of three curve intersection algorithms, Comput.-Aided Des. 18 (1986) 58–63.
[35] T.W. Sederberg, T. Nishita, Curve intersection using Bézier clipping, Comput.-Aided Des. 22 (1990) 538–549.
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