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This paper presents a dislocation density-based non-Schmid constitutive model
to address the anomalous thermo-mechanical behaviour of the L12 intermetal-
lic single-crystal Ni3Al. Ni3Al is used as a strengthening precipitate (γ′ phase)
in Ni-based superalloys. Addressing such anomalous behaviour by accounting
for temperature-dependent flow stress and hardening evolution, as well as
orientation-dependent tension–compression asymmetry, is necessary for
modelling superalloys across a range of temperatures. While hardening in
cube-slip systems results from statistically stored dislocations (SSDs), harden-
ing in octahedral slip systems is due to both SSDs and cross-slip dislocations
(CSDs). The constitutive model incorporates hardening evolution due to SSDs
and CSDs. Experimental data for Ni3Al-type single crystals, available in the
literature, are used to calibrate material parameters. Subsequently, results of
crystal plasticity FEM simulations are compared with experimental data for
several orientations under constant strain rate and creep loading conditions for
a wide range of temperatures. The model is able to correctly predict the
response of L12 intermetallic single crystals including features of anomalous
flow stress and non-Schmid yield behaviour.

Keywords: intermetallic single crystals; anomalous flow stress; tension–
compression asymmetry; cross-slip; non-Schmid yield

1. Introduction

Nickel-based superalloys are widely used in propulsion components of the aerospace
industry such as turbine engine blades, disks, casings and liners. Large investments
have been made in these alloys for improving strength, creep response and fatigue life
properties with the notion of advancing the performance and life of these components
in the field. To accomplish this, robust computational tools are needed for predicting
the mechanical behaviour of these alloys with consequences in microstructural design.
A majority of Nickel-based superalloys have a two-phase γ−γ′ microstructure as shown
in Figure 1(a). The γ phase matrix (white) is a Nickel-rich FCC solid solution, while
the γ′ phase precipitate (black) is a coherent-ordered intermetallic phase Ni3Al has a
L12 crystal structure. The intermetallic γ′ phase is a strengthening precipitate that
provides superior thermomechanical properties to the overall superalloy. It appears as a
distribution of nearly spheroidal or cuboidal precipitates embedded in the disordered
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Ni–Cr solid solution. The unit lattice structures of these two phases are shown in
Figure 1(b) and (c). The solid solution Ni matrix has a regular FCC structure, while in
a unit structure of the Ni3Al crystal, the minority (Al) atoms occupy the corner sites
and the majority (Ni) atoms occupy the face-centred sites. Mechanical properties of the
Ni3Al structured material are different from those of a regular FCC structured material.
The main difference is the length of the Burgers vector for a full dislocation. The length
of a full dislocation or superdislocation in L12 crystal is, 1 1 0h i as opposed to 1

2 110h i
for a full dislocation in regular FCC crystals.

The Ni3Al-based L12 intermetallic γ′ phase exhibits an anomalous dependence of
the flow stress on temperature. This can be seen in the experimental data plots of
Figures 8–12 for various experiments on a Ni3Al + 0.2%B single crystal. Counter to the
conventionally observed material behaviour of monotonic decrease of flow stress with
increasing temperature, the flow stress for this alloy first increases with an increasing
temperature to a peak value at a critical temperature of around 1000 K. Beyond this
critical temperature, the flow stress drops rapidly with increasing temperature. At its
peak, the flow stress is almost four times larger than its value at room temperature. This
anomalous mechanical behaviour of Ni3Al alloys is governed by a complex combina-
tion of underlying dislocation mechanisms. In the anomalous range (~below 1000 K),
slip on octahedral slip systems dominates the deformation process as observed for vari-
ous orientations and temperatures [1]. A significant fraction of the dislocations in this
temperature range are immobile screw dislocations that lock in a Kear–Wilsdorf (KW)
configuration as a result of cross-slip [2,3]. This phenomenon is demonstrated in
Figure 3. There is general agreement in the literature that the predominant source of the
anomalous yielding behaviour in Ni3Al intermetallics is hardening caused by pinned
segments of screw dislocations, when portions of 1 1 0h i super-dislocations cross-slip
from octahedral to cube planes. A secondary mechanism that is responsible for this
behaviour is the activation of cube-slip systems. Cube planes are not closely packed
planes in FCC materials and activation of cube-slip systems has been observed, espe-
cially at temperatures above the critical temperature of peak flow stress. Above this
critical temperature, dislocations on cube planes are of both screw and edge dislocation
types without any cross-slip.

Figure 1. Microstructure of Ni-based superalloys: (a) two-phase γ − γ′ sub-grain microstructure
of Rene 88-DT, (b) unit lattice structure of γ phase and (c) unit lattice structure of γ′ phase.
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Extensive research has been carried out to understand the underlying mechanisms
causing anomalous temperature dependence of the flow stress. Early research on
Ni3Al-based L12 intermetallics focused on yield anomalies, while lately more attention
is given to strain hardening and creep behaviour [4,5]. Takeuchi and Kuramoto [6] have
studied temperature and orientation dependence of the flow stress in Ni3 Ga single crys-
tals based on a cross-slip pinning model. Lall et al. [1] have modified the model in [6]
to include non-Schmid shear stresses as mechanisms responsible for the anomalous flow
stress. Paidar et al. [7] have derived an enthalpy expression for the KW lock formation
as a function of the resolved shear stresses on Shockley partials in primary and sec-
ondary slip planes. The core effects produced by the Shockley partials are responsible
for tension–compression asymmetry and anti-phase boundary (APB) energy in octahe-
dral and cubic planes. The enthalpy term in [7] has been used in several investigations
for developing constitutive models including non-Schmid shear stresses. Cuitino and
Ortiz [8] and Qin and Bassani [9] have used cross-slip activation enthalpy in the
hardening parameters of rate-dependent constitutive models. Allan [10] has employed
the same expression to determine the obstacle dislocation density due to cross-slip pin-
ning. Kameda and Zikry [11] have proposed a constitutive model including mobile and
immobile dislocation densities. Choi et al. [12] have developed a comprehensive con-
stitutive model incorporating non-Schmid shear stresses to capture anomalous tempera-
ture dependence of the flow stress. While this behaviour is generally attributed to the
structure of dislocations in the above models, most of them do not comprehensively
address aspects of temperature dependence, crystal orientations, tension–compression
asymmetry, offset strain criterion and cube-slip system activation in defining the
response of single crystal Ni3Al in a holistic crystal plasticity setting.

The aim of the present study is to develop a constitutive model incorporating non-
Schmid shear stresses and APB shearing that can capture the temperature-dependent
flow stress, strain hardening and creep behaviour of Ni3Al single crystals. The APB
shearing criterion enables manifestation of tension and compression asymmetry for dif-
ferent crystal orientations. This criterion is a function of (i) three non-Schmid shear
stresses on the primary and secondary octahedral slip planes, and the cubic plane, (ii)
the APB energy on octahedral and cubic planes and (iii) the temperature. In [20,21],
the authors have developed a homogenized crystal plasticity constitutive model of
Ni-based superalloys accounting for the subgrain scale γ−γ′ morphology in its constitu-
tive parameters. The present work attempts to supplement the earlier papers with respect
to the following aspects.

• Crystal plasticity constitutive modelling of single-phase Ni3Al crystals is con-
ducted, as opposed to superalloys in the earlier work.

• It covers a wide range of temperatures from room temperature to about 1000 °C,
while the earlier work is in the vicinity of 800 °C only.

• The present work develops an orientation dependent constitutive model for Ni3Al
single crystals, whereas the earlier work was only for [0 0 1] orientation under ten-
sion loadings. The present work accounts for tension–compression asymmetry for
a wide temperature range and all orientations.

• As opposed to hardening in Ni-based superalloys due statistically stored disloca-
tions (SSDs) and geometrically necessary dislocations, hardening in Ni3Al single
crystals is due to SSDs and cross-slip dislocation densities (CSDs).
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• The present work accounts for non-Schmid hardening in both primary and
secondary octahedral slip systems, while the earlier work considered Schmid law
for primary octahedral slip systems alone.

• Cube-slip systems are included as functions of the temperature in the present
work, as experiments show they are operative especially at temperature greater
than 800 °C.

Section 2 of this paper discusses some experimental observations for Ni3Al single
crystals at the macroscopic and microscopic scales. Section 3 develops a dislocation
density-based crystal plasticity framework incorporating non-Schmid stresses and APB
criterion as a function of cross-slip dislocation densities. Section 4 contains simulation
results for both constant strain rate and creep tests. The paper concludes this develop-
ment with a summary in Section 5.

2. Cross-slip mechanism and Kw lock formation

A super-dislocation in Ni3Al often dissociates into superpartials, each having a Burgers
vector 1

2 1 �1 0h i. When two superpartials separate, an APB is created. While APBs can
form in both octahedral and cube planes, the cube plane APB energy is much lower
than that for the octahedral planes. For a cube plane APB, the nearest-neighbour envi-
ronment of the boundary atoms is the same as in the initial configuration, and differ-
ences occur only in the second and higher order neighbour distances [13]. This has
been verified both analytically and experimentally with TEM measurements for stacking
fault-type interfaces in [14,15]. For APB in the octahedral plane, the nearest-neighbour
environment of the boundary atoms changes as shown in Figure 2, where three (1 1 1)
planes of Ni3Al structure are stacked. The size of atoms decreases gradually from the
top to the bottom planes. As shown in Figure 2(a), APB on the (1 1 1) plane is facili-
tated by moving the top layer for 1

2 ½1 �1 0�. The evolved atomic structure after the forma-
tion of APB is shown in Figure 2(b), where the nearest-neighbour environment of the
boundary atoms is altered. Subsequently, each super-partial dislocation can dissociate
into two Shockley partials, creating an interior complex stacking fault (CSF) as shown
in Figure 2(a). In contrast to APB, the Shockley partials only dissociate on the
octahedral planes [13,16]. The dissociation of 1 �1 0h i screw dislocations into two

Figure 2. APB shearing and CSF mechanisms discussed in [13]: (a) before and (b) after
shearing.
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superpartials with a Burgers vector 1
2 1 �1 0h i and consequently dissociation into Shockley

partials has been widely observed. This is considered to have a major effect on the
anomalous temperature dependence of flow stress in L12 single crystals. With increasing
temperature, the screw dislocations tend to cross-slip from octahedral slip planes {1 1 1}
onto cube planes {0 1 0} with drop in the APB energy. Subsequently, the cross-slipped
dislocation drives back onto either a parallel (1 1 1) or a non-parallel ð1�11Þ octahedral
plane. In the first case, the cross-slipped dislocation moves by a Burgers vector on the
cube plane, while in the latter it moves by half a Burgers vector to create a non-planar
KW lock [17] as shown in Figure 3. Due to the cross-slip of screw dislocations and
formation of KW locks, the mobile dislocations become immobile, which results in the
anomalous yield behaviour.

Experimental observations have confirmed that the cross-slip mechanisms in L12
single crystals do not conform to the Schmid’s law commonly employed in crystal
plasticity models [18]. In other words, Schmid’s law breaks down in situations where
the effect of partial dislocations comes to play or there are core effects. This law has
been conventionally used to characterize the dependence of the resolved shear stress on

Figure 3. KW lock formation: (a) APB on the octahedral (primary slip) plane, (b) APB on the
cube plane and (c) 3D configuration of KW lock.
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loading orientation in the form of a simple geometric formula. The evolving hardness
due to the cross-slip mechanism is asymmetric with respect to tension and compression
loading and also depends on the crystal orientations. Contours of the maximum Schmid
factor are plotted in n Figure 4(a), which shows the stereographic triangle having three
orientations of ½0 0 1�; ½0 1 1� and ½1 1 1� at the three corners. Experimental observations
demonstrate that while the maximum Schmid factor for the two orientations [0 1 0] and
[0 1 1] are similar, the corresponding flow stresses in tension and compression are dif-
ferent. The orientation [1 1 1] with the least Schmid factor is expected to have maxi-
mum flow stress, but experiments show that this orientation will have the weakest flow
stress as temperature rises. One of the reasons for the violation of Schmid’s law is the
activation of cube-slip systems. Cube-slip systems can be activated mainly for the grey
area in Figure 4, which represents orientations with primary activation of cube-slip sys-
tems. In this region, the ratio of the Schmid factor for cube-slip systems is higher than
that for the octahedral slip systems. Likewise, tension–compression asymmetry due to
non-Schmid effects has been observed for almost all orientations. Orientations close to
the [0 0 1] on the stereographic triangle show a higher flow stress in tension while for
orientations close to [0 1 1], the compression flow stress is higher than the tensile
strength.

TEM results e.g. in [17] show that in the temperature range of anomalies, the
dislocations present are mostly long screw type as shown in Figure 5. These observa-
tions indicate that screw dislocations are much less mobile than edge dislocations and
most of the dislocations responsible for the anomaly of increased flow stress are of the
screw type. The sessile screw superdislocation segments are mostly locked in the KW
configurations. Hence, 1 1 1f g �1 0 1h i screw dislocations can cross-slip onto the cube
planes, driven by a drop in APB energy. If the leading superpartials cross-slip onto a
cube plane for some distance, then cross-slip back onto an octahedral plane and move
forwards until the trailing superpartials meet the cross-slipped cube plane as shown in
Figure 3. For geometrical reasons, individual Shockley partials do not cross-slip since
1
6 1 1 2h i lies only in the octahedral planes. According to Paidar et al. [7], once the par-
tial dislocations become constricted as shown in Figure 3 and cross-slip, they move a
short distance before they redissociate on (1 1 1) plane. This plane can be either (1 1 1)
when the short distance is b, or ð1�11Þ when the short distance is b

2. In Figure 3, there
are three non-Schmid shear stresses participating in the creation of the KW lock. These
are: (i) resolved shear stress sape on the primary octahedral slip plane (1 1 1), (ii)
resolved shear stress sacb driving the dislocation in the cube plane after cross-slip and

Figure 4. Contour plots of: (a) Schmid factor for octahedral slip system, and (b) ratio of Schmid
factor of cube to octahedral slip systems in a stereographic unit triangle.
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(iii) resolved shear stress sase in either of the secondary (1 1 1) or ð1 �1 1Þ slip planes. As
shown in Figure 4, the shear stress sape constricts the Shockley partials and is partially
responsible for the tension–compression asymmetry. For one of the load directions, sape
constricts the Shockley partials to promote cross-slip resulting in the higher flow stress,
while in the opposite direction it hinders cross-slip with a decrease in flow stress.

3. Crystal plasticity constitutive model For Ni3Al single crystals

Deformation of Ni3Al involves the activation of 12 octahedral slip systems [10]. A
commonly observed mechanism at a wide range of temperatures is that a super-disloca-
tion dissociates into two superpartials each having a Burgers vector of 1

2 1 �1 0h i, creating
a planar fault APB. Subsequently, the superpartials generally dissociate and split into
two Shockley partials, bounding a CSF having Burgers vectors of 1

6 1 1 2h i. In order to
incorporate the resolved shear stresses (sape; s

a
se) associated with the Shockley partials on

primary and secondary octahedral planes, as shown in Figure 3, four octahedral slip
planes corresponding to the {1 1 1} family, with three slip directions of the family
11�2h i for each of slip plane, are considered. On the other hand, thermally activated
cross-slip mechanism results in sacb on cube planes, which is another non-Schmid
component in the resolved shear stress.

3.1. Activation of cube-slip systems

Experimental observations indicate that below the peak temperature shown in Figure 6,
dislocation glide on the primary octahedral plane {1 1 1} is responsible for plastic

Figure 5. Dislocation structure of a Ni3Al single-crystal compressed along the [0 0 1] direction at
600 °C. Long screw dislocation in KW configuration parallel to Burgers vectors b1 and b2 shown
in [19]. (Reproduced with permission from Elsevier.)
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deformation, while above this peak the primary cube plane {0 0 1} controls the
deformation process. However, this is not the case for orientations close to [1 1 1] as
discussed in [1]. For these orientations, traces of slip on cube-slip systems are observed
at temperatures as low as 300 K, in addition to glide on the octahedral slip systems. To
account for the resolved shear stress (sacb) due to cross-slip on the cube plane, as shown
in Figure 3, six cube-slip planes of the {1 0 0} family, each with two slip directions
0 1 �1h i are considered. Octahedral slip systems (α = 1−12) and cube-slip systems
(α = 13−18), listed in Table 1, are considered for all temperature ranges. As seen in
Figure 4(b), the Schmid factor for cube-slip systems for orientations near [1 1 1] is
higher than the Schmid factor for the octahedral slip systems. Note that immobilization
of screw dislocations due to the KW locks, which results in anomalous increase in yield
strength, occurs just for the octahedral slip systems. Hence, the APB shearing criterion
differs for octahedral and cube orientations.

3.2. Dislocation density-based crystal plasticity model

Deformation in crystals results from a combination of elastic stretching, crystal lattice
rotation and plastic slip on different lattice slip systems. Following developments in
[21–24], large-strain kinematics in the crystal plasticity formulation is accommodated
through a multiplicative decomposition of the total deformation gradient F into an

Figure 6. Sensitivity of the stress–strain response of Ni3Al + 0.2%B single crystal to different
values of exponent p in Equation (4).

Table 1. Octahedral and cube-slip systems for Ni3Al crystals.

α 1 2 3 4 5 6

ðnaÞ½ma� ð1 1 1Þ½0 �1 1� ð1 1 1Þ½�1 1 0� ½�1 1 0�½1 0 �1� ð1 �1 �1Þ½1 0 1� ð1 �1 �1Þ½0 1 �1� ð1 �1 �1Þ½�1 �1 0�
α 7 8 9 10 11 12

ðnaÞ½ma� ð�1 �1 1Þ½�1 0 �1� ð�1 �1 1Þ½0 1 1� ð�1 �1 1Þ½1 �1 0� ð�1 1 �1Þ½�1 0 1� ð�1 1 �1Þ½0 �1 �1� ð�1 1 �1Þ½1 1 0�
α 13 14 15 16 17 18

ðnaÞ½ma� ð1 0 0Þ½0 1 1� ð1 0 0Þ½0 1 �1� ð0 1 0Þ½1 0 1� ð0 1 0Þ½1 0 �1� ð0 0 1Þ½1 1 0� ð0 0 1Þ½1 �1 0�
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incompressible inelastic component Fpassociated with pure slip, and an elastic
component Fe that accounts for elastic stretching and rigid-body rotations. This
decomposition introduces an intermediate configuration that is free of plastic straining.
A summary of the essential crystal plasticity equations are given below. The kinematic
relations are:

F ¼ FeFp ; s.t. detFe [ 1 and detFp ¼ 1 (1)

Evolution of plastic deformation is expressed in terms of the plastic velocity gradient
Lp, the plastic shear rate _ca on slip system α, and Schmid tensor sa0 � ma

0 � na0 (ma
0 and

na0 are the slip direction and slip plane normal unit vectors in the reference configura-
tion) as:

Lp ¼ _FpF�p ¼
XN
a¼1

_cama
0 � na0 ¼

XN
a¼1

_casa0 (2)

The stress–strain relation is in terms of the second Piola–Kirchoff stress S and its work-
conjugate the Lagrange–Green strain tensor Ee in the intermediate configuration that are
expressed as:

S ¼ detðFeÞFe�1rðFe�1ÞT ¼ C : Ee andEe � 1

2
fðFeÞTFe � Fg (3)

Where I is the identity tensor, C is a fourth-order anisotropic elasticity tensor and r
is the Cauchy stress tensor. Ni3Al exhibits plastic anisotropy, which is mostly
accommodated through crystallographic slip on discrete slip systems and by the
mechanism of APB formation. The signed dislocation density-based crystal plasticity
model used for Nickel-based superalloys in [20,22,23] is modified in this work for
rate-dependent plastic behavior Ni3Al single crystals. These modifications are
incorporated by adding cube-slip systems to the existing octahedral slip systems. On
the other hand, the model incorporates the evolution of both SSDs due to four
deformation mechanisms discussed in [20,22,23] and CSDs developed in this work.
The plastic shearing rate on a slip system α is expressed using the Orowan equa-
tion:

_ca ¼ qambv
a ; where va ¼ v�exp � Q

KBh

� �
sinh

sa
�� ��� sapass

sacut

 !p

sign sað Þ (4)

Here qam is the density of mobile dislocations, b is the Burgers vector and vα is the
velocity of dislocations on the slip system α. The velocity of dislocations is a function
of the applied shear stress τα, the passing stress sapass in the slip system and other slip

system resistances. The term v� ¼ c1h
c2ffiffiffiffiffiffiffiffi

qaPq
a
F

p is the initial velocity, Q is the activation

energy barrier, KB is the Boltzmann’s constant and θ K is the absolute temperature. An
exponent p is incorporated in the argument of the sinh term in the present work for pro-
viding a control to the velocity for a given hardening evolution. Slip system resistances
are represented in terms of (i) the passing stress sapass due to the interaction of mobile

dislocations with other dislocations and their networks in the slip plane and (ii) the cut-
ting stress sacut due to the mobile dislocations cutting the forest dislocations with density
qaF perpendicular to the slip plane. These stresses are expressed as [25]:
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sapass ¼ c3Gb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qaP þ qam

p
; sacut ¼

c4KBh
b2

ffiffiffiffiffiffi
qaF

p
(5)

where c3 and c4 are material constants and G is the shear modulus. Contributions to the
overall slip resistance are assumed to be due to SSDs. The rate of evolution of statisti-
cally stored dislocation density denoted as _qaSSD has been identified in [25] as the net
effect of components due to lock formation, dipole formation, athermal annihilation and
thermal annihilation as:

_qaSSD ¼ _qaþSSDlf
þ _qaþSSDdf

þ _qa�SSDaa
þ _qa�SSDta

(6)

Superscripts +/− correspond to multiplication and annihilation respectively. The rate
increase due to lock formation, dipole formation and decrease due to mechanisms of
dislocation annihilation due to thermal and athermal annihilation are respectively given
as [25]:

_qaSSDlf
¼ c5

b

ffiffiffiffiffiffi
qaF

p
_ca ; _qaSSDdf

¼ c6
b

ffiffi
3

p
Gb

16p 1�mð Þ saj j � sapass

� ��1
qam _c

a;

_qaSSDaa
¼ �c7qaSSD _c

a and _qaSSDta
¼ �c8

D0b3

kBh
exp �Qbulk

kBh

� �
qaSSD
� 	2

saj j _ca

_cref

� �c9 (7)

where c5; c6; c7; c8 and c9 are material constants, D0 is the diffusion co-efficient, Qbulk is
the activation energy for dislocation climb and _cref is a reference shear rate. Each of the
contributing components in Equation (7) is a function of the slip rate _ca, forest disloca-
tion density, statistically stored dislocation density, component of applied shear stress τα

and the absolute temperature θ. Thus, a general form is proposed as
_qaSSD ¼ _qaSSD _ca; qaSSD; qF ; s

a; h
� 	

. The forest and parallel dislocation densities are now
written as functions of the SSDs [25] with an interaction strength coefficient vab
between different slip systems [26], as:

qaF ¼
XN
b¼1

vab qbSSD cos na; tb
� 	�� ��h i

; qaP ¼
XN
b¼1

vab qbSSD sin na; tb
� 	�� ��h i

(8)

This evolves with SSDs due to plastic deformation and hardening mechanisms. The
density of mobile dislocations qam is computed as a function of forest and parallel
dislocation density and the temperature as:

qam ¼ c10kBh
ffiffiffiffiffiffiffiffiffiffiffi
qaFq

a
P

p
Gb3

(9)

3.3. Hardening related to thermally activated cross-slip mechanism

The CSDs act as local obstacles to further dislocation motion. The rate of generation of
these obstacles is assumed to be proportional to the rate of cross-slip. The activation
enthalpy for cross-slip depends on the APB energy on the primary octahedral slip and
cube-slip planes, as well as on the non-Schmid components of the resolved shear stress.
The non-Schmid shear stresses sape; s

a
se and s

a
cb play important roles in the dislocation

dissociation and slip on the octahedral slip systems, and contribute to their slip resis-
tances. However, this is not the case for cube-slip systems, for which there are no
dislocation core effects and hence the non-Schmid terms are not necessary.

2648 S. Keshavarz and S. Ghosh

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
1:

33
 1

6 
O

ct
ob

er
 2

01
5 



Consequently, the APB shearing criterion can be formulated for two categories, viz. (i)
to incorporate the non-Schmid effects in octahedral slip systems and (ii) to account for
the cube-slip systems. To accommodate these phenomena in the crystal plasticity for-
mulation, the APB shearing criterion in [23] is extended as follows:

saeff ¼ sa
�� ��� sapass [ sc (10)

where

saeff ¼
sa
�� ��� sapass for sa

�� ��[ sapass
0 for sa

�� ��� sapass

(
(11)

The critical shear stress sc in Equation (10) for octahedral slip systems is a function of
the primary and secondary shear stresses on the octahedral planes, shear stress on the
cube plane, temperature and the APB energy on the octahedral and cube planes. For the
cube-slip systems sc is just a function of temperature. Correspondingly, these dependen-
cies are stated as:

sac ¼
saco ¼ saco sape; s

a
se; s

a
cb; h;C1 1 1;C0 1 0

� �
on octahedral slip systems

scc ¼ sccðhÞ on cube-slip systems

8>><
>>:

9>>=
>>; (12)

Furthermore, the critical shear stress for octahedral slip systems in Equation (12) can be
expressed as a function of the dislocation density due to cross-slip, i.e.

saco ¼ nl
ffiffiffiffiffiffiffiffiffiffi
qaCSD

p
for octahedral slip systems (13)

where μ is the shear modulus defined in [10]. The temperature parameter ξ accounts for
the strength of the pinning obstacles. This strength decreases with increasing
temperature, according to an exponential relation given in [10] as:

n ¼ n0 exp
A

h� hc

� �
(14)

where ξ0 and A are materials constants θ is absolute temperature, and θc is a critical
temperature that can be approximated as the precipitation temperature for γ′ particles
[10]. The dislocation density qaCSD due to cross-slip is given in [10] as:

qaCSD ¼ q0 exp � Ha

KBh

� �
(15)

where ρ0 is the dislocation density due to cross-slip at overall yield and Hα is the
activation enthalpy for cross-slip. The enthalpy depends on the APB energy on the pri-
mary and secondary slip planes and the cube cross-slip plane, as well as on the resolved
shear stresses acting on these planes. In [7,8] this enthalpy has been shown to be consti-
tuted of three parts given as:

Ha ¼ cH hþ k1ðtape � k2t
a
seÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
3

p � C0 1 0

C111 þ tacb
�� ��� �

b

B

s8<
:

9=
; (16)
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where h; k1 and k2 are materials constants to be calibrated, Γ1 1 1and Γ0 1 0 (J/m2) are the
APB energies per unit area on cube and octahedral planes, respectively. The normalized
slip system resolved shear stresses taxx and constants B and cH are defined in [7] as:

taxx ¼
saxx

C1 1 1=b
; B ¼ lb2

2pC1 1 1 and cH ¼ lb3

4p

The cross-slip dislocation densities increase with increasing temperature, and with the
formation of thermally activated constrictions. The increase in cross-slip dislocation
densities results in increasing critical shear stress corresponding to Equation (13). At
the same time, there is a reduction in the strength of obstacles with an increase in
temperature according to Equation (14). Thus, with increasing temperature, there is a
competition between increasing strength due to formation of KW locks and obstacle
strength reduction. The model can be used for the matrix-precipitate APB shear
modelling in Ni-based superalloys.

4. Calibration and validation of the proposed model

The model developed in Section 3 is calibrated and validated in this section for variants
of single crystals Ni3Al. A crystal plasticity finite element model implementing
Equations ((4)–(16)), similar to [22,23], is developed for this purpose. The parameter
calibration process is performed for Ni3Al + 0.2%B. It is shown that most of these cali-
brated parameters can be applied to variants of Ni3Al with minor changes. The constitu-
tive model with hardening due to SSDs and CSDs does not contain any size dependent
parameter and the results are as such not mesh sensitive. Validation of the model is
done with loading corresponding to constant strain-rate and creep tests. For the creep
simulations, the material is single crystal of Ni3Al + 1%Ta.

4.1. Calibrating constitutive parameters

Constitutive parameters in the crystal plasticity model in Equations ((4)–(16)) can be
divided into two categories. Parameters in the first category are taken directly from
papers [8,10] found in the literature. They include h ; C0 1 0 ; C1 1 1; b; l and q0, which
have values 0.3, 0.083, 0.3, 2:49� 10�10 m 142.2 GPa, and 5:0� 1015m=m3, respec-
tively. The initial value of the SSD density is obtained from the experimental data in
[10] as a function of temperature given as:

qSSD0 ¼ 7:5� 109 � 8:36� 106 h 8 h� 659K
2� 109 otherwise




The critical shear stress for cube-slip systems is also a parameter that belongs to this
category. It varies with temperature due to creation of cross-slip just for the octahedral
slip systems. From the data in [10], the cube-slip resistance is derived as:

scc ¼ 330MPa 8 h� 915K
858� 0:5777hMPa otherwise




The remaining parameters in the constitutive model, corresponding to the second cate-
gory, are calibrated from experimental data on single crystal Ni3Al + 0.2%B in [25].
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The parameters correspond to the yield state, temperature state and hardening state. The
experiments have been conducted with an applied strain-rate loading of
_e ¼ 	1:3� 10�3s�1 for different lattice orientations, and at temperatures ranging from
room temperature to 1300 K. For the calibration process, a single-crystal CPFE model
is developed and simulated for various loading cases. Stress–strain plots are generated
from these simulations.

4.1.1. Constitutive parameters for the yield state

The yield state includes yields strengths from the beginning of plastic deformation to
that at 0.2% offset strain. Some of the constitutive parameters in Section 3 have more
impact on this state. The parameters may be itemized as: (i) velocity of plastic shear
strain in Equation (4), (ii) passing and cutting stresses in Equation (5) for the onset of
plastic shear deformation and (iii) enthalpy term in Equation (16) for the yield strength
corresponding to 0.2% offset strain. While these equations have multiple parameters,
the important ones that are more sensitive to the yield state are listed in Table 2. The
exponent p in Equation (4) is responsible for the rate of transition from elastic to the
plastic state. To understand the sensitivity to p, three simulations are conducted for the
[0 0 1] orientation at 1000 K for three values of p, viz. 0.5, 0.75 and 1.0. Results are
shown in Figure 6. The magnitude of the yield stress is not important in this study
because it can be matched by changing the other constants. The main difference among
the three plots is the rate of transition from elastic to plastic state. It is clear that with
increasing p this transition gets sharper. As a result, there will not be any change in
yield stress for offset strains 0.05–1%. This has been reported in the literature [12,26].

The second property that is sensitive to the yield state is the activation energy Q,
which exponentially changes the rates of plastic shear deformation in Equation (4).
Smaller activation energy accumulates more plastic deformation at a given temperature.
This results in a larger evolution of mobile dislocation densities. Higher activation
energy increases the barrier strength and the velocity of dislocation drops rapidly due to
exponential relation between activation energy with dislocation velocity. Three simula-
tions for the [0 0 1] orientation at 1000 K for three activation energies Q = 1.1 × 10−20,
1.1 × 10−20 and 1.1 × 10−21 J respectively are performed to demonstrate the effect of
activation energy on the yield state. Results are shown in Figure 7. Larger values of Q
result in very small values for velocity. For activation energy of 1.1 × 10−19 J, the plas-
tic deformation is very small and almost zero for total strain of 0.013. Higher accumula-
tion of plastic deformation occurs by decreasing the activation energy.

Two constants k1 and k2 are responsible for tension–compression asymmetry in the
yield state. Simulations are performed for three sets of k1 and k2. The values of k1 and
k2 are 0 and 0.2, 0.5 and 0, and 0.5 and 0.2 respectively, for the first, second and third
sets. The variation of the yield stress for a 0.2% offset strain as a function of tempera-
ture for the first set are shown in Figure 8 for three orientations corresponding to the

Table 2. Experimentally calibrated parameters for the yield state of the constitutive model.

Parameter p Q k1 k2

Value 0.5 1.1 × 10−20 0.5 0.2
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Figure 7. Sensitivity of the stress–strain response of Ni3Al + 0.2%B single crystal to different
values of activation energy Q in Equation (4).

Figure 8. Variation of flow stress in Ni3Al + 0.2%B with temperature, for different orientations
in tension and compression loading: (a) [0 0 1], (b) [1 9.1 10.1], and (c) [1 1.1 1.2] for k1 = 0.0
and k2 = 0.2.
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three corners of the standard unit triangle. There is slight tension–compression
asymmetry around the peak temperature for orientations close to [0 0 1]. However, the
asymmetry increases as it approaches the [0 1 1] orientation, and hence k2 affects
the asymmetry for orientations close to [0 1 1]. The same results are shown for the
second set in Figure 9. A huge tension–compression asymmetry is seen for orientations
close to [0 0 1], while it reduces closer to [0 1 1]. Results for the third set are shown in
Figure 10. The enthalpy constants k1, k2 are obtained from results of simulations for the
three orientations at 1000 K, shown in Figure 10.

4.1.2. Constitutive parameters for the temperature state

The second set of calibrated constitutive parameters corresponds to the temperature state
and captures the anomalous behaviour of Ni3Al alloys, given in Equation (14). The
parameter ξ in this equation represents the strength of the pining obstacles and
decreases with increasing temperature. The rate of this decreasing parameter increases
rapidly as the upper boundary temperature θc is approached, at which climb mechanism

Figure 9. Variation of flow stress in Ni3Al + 0.2%B with temperature, for different orientations
in tension and compression loading: (a) [0 0 1], (b) [19.1 10.1], and (c) [1 1.1 1.2] for k1 = 0.5 and
k2 = 0.0.
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ensues. This parameter has a value more than unity for temperatures lower than the
peak temperature and is less than unity for higher temperatures. For calibrating the three
parameters n; A; hc, the yield stresses corresponding to three temperatures 300, 1000
and 1300 K for [0 0 1] orientation under tension loading are used. The calibrated
parameters are listed in Table 3.

4.1.3. Constitutive parameters for the hardening state

The third set of the calibrated parameters represents the hardening state. While this is
not a focus in this paper, calibrated parameters are listed in Table 4.

Figure 10. Variation of flow stress in Ni3Al + 0.2%B with temperature, for different orientations
in tension and compression loading: (a) [0 0 1], (b) [13.2 18], (c) [1 9.1 10.1], and (d) [1 1.1 1.2]
for k1 = 0.5 and k2 = 0.2.

Table 3. Experimentally calibrated parameters for the temperature state of the constitutive model.

Parameter ξ0 A θc

Value 2.1 325 1400
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4.2. Validation of the APB Shearing Criterion

Validation tests are performed with the CPFE model for (i) constant strain-rate loading
on the alloy Ni3Al + 0.2%B and (ii) creep loading on the alloy Ni3Al + 1%Ta.

4.2.1. Constant strain-rate simulations

Several orientations over the entire stereographic triangle shown in Figure 4 are selected
for validation of the APB shearing model. For each orientation, tension and compres-
sion simulations are done for a set of eleven temperatures from ranging 300–1300 K at
increments of 100 K. Comparison between the simulated results and experimental data
are shown in Figure 10. Figure 10(a) shows the comparison for [0 0 1] orientation both
in tension (T) and compression (C). The tension–compression asymmetry at low tem-
peratures is negligible. However, significant asymmetry is observed near the peak yield
stress that corresponds to temperatures in the neighbourhood of 1000 K. The peak yield
stress at 1000 K is around 800 MPa in tension and less than 600 MPa in compression.
At higher temperatures, this asymmetry diminishes and it tends to zero asymmetry in
the high temperature ranges. The experiments show that in the stereographic triangle
([0 0 1], [0 1 1], [1 1 1]) orientations close to the [0 0 1] corner are stronger in tension.
To verify this, a comparison for the [1 3.2 18] orientation that is close to [0 0 1] corner,
is shown in Figure 10(b). The same trend is seen with less tension–compression
asymmetry for this orientation. However, the trend changes for the [1 9.1 10.1] orienta-
tion, which is very close to the [0 1 1] orientation. The results for this orientation are
shown in Figure 10(c), where the yield stress in compression is higher than in tension.
This difference is small at room temperature, but increases with the temperature increas-
ing to a critical value Tp where the stress peak is reached, and subsequently decreases.
For higher temperatures (>1100 K), the low asymmetry due to activation of cube-slip
systems can be seen. While, the Schmid factor for cube-slip systems in this orientation
is less than for octahedral slip systems, the critical resolved shear stress (CRSS) for
cube-slip systems decreases dramatically with increasing temperature. Hence, for
orientations close to the [0 1 1] corner, cube-slip systems dominate at temperatures
higher than the critical temperature Tp of peak stress.

To understand the activation of cube-slip systems at temperatures less than the
critical temperature, a comparison for the [1 1.1 1.2] orientation that is very close to the
[1 1 1] corner is shown in Figure 10(d). In this scenario, the tension–compression
asymmetry is minimal even at the critical temperature of around 900 K because of the
activation of cube-slip systems. From results of these four orientations, one can infer
that at the room temperature, the [1 1 1] orientation has the highest yield stress. Near
the critical temperature of around 1000 K, orientations close to [0 0 1] have the highest
yield stress in tension while highest yield stress in compression corresponds to orienta-
tions close to [0 1 1].

Table 4. Experimentally calibrated parameters for the hardening state of the constitutive model.

Parameter c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Value 1.7 × 1016 −3.77 4 100 1.0 × 10−3 1.0 × 10−4 10 10 0.3 25
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In [1] it has been argued from experimental observations that the tension–
compression asymmetry should disappear along the ½0 1 2� � ½�1 1 3� great circle, where
the non-Schmid component of τpe is zero. CPFE simulations are conducted for these
two orientations both in tension and compression and results are shown in Figure 11.
No tension–compression is observed, which agrees with the experimental observations
in [1] for these two orientations. In [12,27] it has been reported that the anomalous
behaviour of single crystal and polycrystalline Ni3Al, in terms of magnitude, depends
on the definition of yield stress. This mechanism is investigated for Ni3Al + 0.2%B in
the [0 0 1] orientation for a tension test. Figure 12 shows the variation of yield stress
with temperature for offset strains 0.05–1%. The asymmetry diminishes with decreasing
offset strain.

Figure 11. Variation of the flow stress with temperature for the alloy Ni3Al + 0.2%B, in tension
and compression for zero tension–compression asymmetry orientations: (a) [0 1 2], and (b) [1 1 3].

Figure 12. Variation of the flow stress with temperature for Ni3Al + 0.2%B at different offset
strains in [0 0 1] orientation for a tension test.
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4.2.2. Creep simulations

The same anomalies in constant strain-rate tests have been observed for creep tests.
Hemker et al. [5] have studied the behaviour of single-crystal Ni3Al + 1%Ta under
creep loading conditions by surface slip trace analysis at deferent temperatures. The
plastic strain corresponding to steady state creep response decreases with increasing
temperature up to the critical temperature Tp and subsequently increases dramatically.
Primary and secondary octahedral slip systems are activated in the primary creep stage,
whereas in the secondary stage the cube cross-slip system operates [28]. In primary
creep, superdislocations glide on octahedral planes consisting mainly of long and
straight screws, which are in the form of KW locks. This is similar to microstructures
observed in constant strain-rate tests below the critical temperature Tp, for which the
octahedral slip systems have a lower CRSS than cube systems. Upon loading, slip is
initiated on an octahedral plane. As the 1 1 0h i super-dislocations spread out on {1 1 1},
their screw segments undergo cross-slip from the octahedral plane to the cube cross-slip
plane, forming KW locks driven by the anisotropy of APB energy.

To validate the model for creep, CPFE simulations are carried out at an intermediate
temperature for single crystal Ni3Al + 1%Ta. The constitutive parameters are calibrated
from experimental data in [5] and are the same as in Table 2. However, due to change
of the alloy material from Boron to Tantalum, only two parameters, viz.,
n0 ¼ 1:2 and c1 ¼ 0:85� 1016 have been found to be different. Experimental results in
Zhu et al. [28], covering three corners of the stereographic triangle at 520 °C under
compression load 550 MPa are used for validation. CPFE simulations are done for the
three orientations shown in the stereographic unit triangle of Figure 13. These orienta-
tions are: [1 2 3], [1 1 12] (7° away from [0 0 1]), and [11 11.5 12], (~2° off from [1 1
1]). The maximum octahedral Schmid factors for these three orientations are 0.47, 0.44
and 0.30 respectively. For the [1 2 3] and [1 1 12] orientations, the octahedral slip

Figure 13. Creep simulations for three orientations of Ni3Al + 1%Ta at 520 °C with compression
stress of 550 MPa.
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systems are activated initially that result in higher plastic strains under steady-state
creep conditions. However, for the [11 11.5 12] orientation, where the maximum Schmid
factor for the cube-slip system is 0.48, cube-slip systems are activated primarily and this
is the reason for higher plastic strain. The progress of creep strain in the loading direc-
tion as a function of time is shown in Figure 13. The results show good agreement
between simulations and experimental data in [28]. However for the [1 1 1] orientation
there is a difference due to the unchanged cube-slip properties.

5. Summary

This paper successfully develops a novel dislocation density-based constitutive model for
L12 Ni3Al single crystals that is able to predict its non-conventional thermomechanical
behaviour, including the anomalous temperature dependence of flow stress and hardening
evolution, as well as the orientation-dependent tension–compression asymmetry. The
model considers four octahedral primary and secondary slip planes corresponding to the
{1 1 1} family, with three slip directions of the family 1 1 �2h i for each of slip plane. In
addition, thermally activated cross-slip results in the activation of cube planes and non-
Schmid components of the resolved shear stress. A major contribution of this work is the
development of a criterion for APB shearing in the crystal plasticity model. This APB
criterion is formulated to incorporate the non-Schmid terms in the flow rule for octahedral
slip systems and also to account for the cube-slip systems. The critical shear stress for
octahedral slip systems is a function of the primary and secondary shear stresses on the
octahedral planes, shear stress on the cube plane, temperature and the APB energy of the
octahedral and cube planes, while for the cube-slip systems is just a function of tempera-
ture. The model also incorporates the evolution of dislocation density due to cross-slip
that depends on the APB energy of the primary and secondary slip planes and the cube
cross-slip plane, as well as on the resolved shear stresses acting on these planes.

The resulting crystal plasticity model with parameters calibrated from experiments is
able to capture the anomalous phenomenon of increasing flow stress with increasing
temperature followed by a rapid decrease for all crystal orientations. Furthermore, the
expression for activation enthalpy for cross-slip allows for adequate representation of
the tension–compression asymmetry of selected slip systems. For orientations close to
[0 0 1] in the unit stereographic triangle, flow stress in tension is stronger than compres-
sion, while by moving to the [0 1 1] corner it changes to compression having the higher
flow strength. Orientations on the line between [0 1 2] and [1 1 3] show zero asymmetry
in tension–compression. By moving to [1 1 1] corner, cube-slip systems begin to acti-
vate and asymmetry in tension–compression disappears. The value of the flow stress
and its dependence on temperature depends on the composition of the particular L12
alloy being modelled. The proposed model can accommodate a variety of alloys by
calibration of a few parameters as done for Ni3Al + 1%Ta and Ni3Al + 0.2%B in this
paper with only two parameter changes.

Acknowledgements
This work has been partially supported by the National Science Foundation, Civil and Mechanical
Systems Division through grant number CMMI-1,200,231 (program director: Dr. Alexis Lewis).

2658 S. Keshavarz and S. Ghosh

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
1:

33
 1

6 
O

ct
ob

er
 2

01
5 



It has also been partially supported by the Air Force Office of Scientific research and Air Force
Research Laboratories/RX through grant number FA9550-12-1-0445 to the Center of Excellence
on Integrated Materials Modelling (CEIMM) at Johns Hopkins University (AFOSR program
director: Dr. Ali Sayir and AFRL program monitors Drs. C. Woodward and C. Przybyla). This
sponsorship is gratefully acknowledged. Computer use of the Hopkins High Performance
Computing (HHPC) facilities is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work has been partially supported by the National Science Foundation, Civil and Mechanical
Systems Division through [grant number CMMI-1200231] (program director: Dr. Alexis Lewis).
It has also been partially supported by the Air Force Office of Scientific research and Air Force
Research Laboratories/RX through [grant number FA9550-12-1-0445] to the Center of Excellence
on Integrated Materials Modelling (CEIMM) at Johns Hopkins University (AFOSR program
director: Dr. Ali Sayir and AFRL program monitors Drs. C. Woodward and C. Przybyla).

References

[1] C. Lall, S. Chin and D.P. Pope, Metall. Trans. A 10 (1979) p.1323.
[2] M. Nemoto, J. Echigoya and H. Suto, Jpn. Soc. Elec. Mic. 26 (1977) p.467.
[3] P. Lours, A. Coujou and P. Coulomb, Acta Metall. Mater. 39 (1991) p.1787.
[4] P.B. Hirsch, Phil. Mag. A 65 (1992) p.569.
[5] K. Hemker, M.J. Mills and W.D. Nix, Acta Metall. 39 (1991) p.1909.
[6] S. Takeuchi and E. Kuramoto, Acta Metall. 21 (1973) p.415.
[7] V. Paidar, D.P. Pope and V. Vitek, Acta Metall. 32 (1984) p.435.
[8] A.M. Quitino and M. Ortiz, Mater. Sci. Eng. A 170 (1993) p.111.
[9] Q. Qin and J.L. Bassani, J. Mech. Phys. Solids 40 (1992) p.813.
[10] C.D. Allan, Plasticity of nickel base single crystal superalloys, PhD thesis, MIT 1995.
[11] T. Kameda and M.A. Zikry, Scr. Mater. 38 (1998) p.631.
[12] Y.S. Choi, D.M. Dimiduk, M.D. Uchic and T.A. Parthasarathy, Phil. Mag. 87 (2007) p.1939.
[13] V. Paidar and V. Vitek, Int. Com. 22 (2002) p.437.
[14] P. Veysseire, Adv. Phil. Metal. (1996) p.248.
[15] C.L. Fu and M.H. Yoo, Mat. Res. Soc. Symp. Proc. 81 (1989) p.133.
[16] S.M. Foiles and M.S. Daw, J. Mater. Res. 2 (1987) p.5.
[17] B.H. Kear and G.F. Wilsdorf, Trans. TMS-AIME 224 (1962) p.382.
[18] E. Schmid and W. Boas, Plas. Cry: With Special Reference to Metals, F. A. Hughes Co.,

London, 1950.
[19] C. Rentenberger and H.P. Karnthaler, Mat. Sci. Eng.: A 319–321 (2001) p.347.
[20] S. Keshavarz and S. Ghosh, Int. J. Solids Struct. 55 (2015) p.17.
[21] R.J. Asaro and J.R. Rice, J. Mech. Phys. Solids 25 (1977) p.309.
[22] S. Ghosh and S. Keshavarz, 55thAIAA/ASMe/ASCE/AHS/SC Structures, Structural Dynamics,

and Materials Conference: SciTech 2014, January 2014.
[23] S. Keshavarz and S. Ghosh, Acta Mater. 61 (2013) p.6549.
[24] T. Tinga, W.A.M. Brekelmans and M.G.D. Geers, Model. Simul. Mater. Sci. Eng. 015005

(2010) p.1.

Philosophical Magazine 2659

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
1:

33
 1

6 
O

ct
ob

er
 2

01
5 



[25] F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler and D. Raabe, Acta Mater.
58 (2010) p.1152.

[26] A. Arsenlis and D. Parks, J. Mech. Phys. Solids. 50 (2002) p.1979.
[27] P.H. Thornton, R.G. Davies and T.L. Johnston, Metall. Trans. 1 (1970) p.207.
[28] W.H. Zhu, D. Fort, I.P. Jones and R.E. Smallman, Acta Mater. 46 (1998) p.3873.

2660 S. Keshavarz and S. Ghosh

D
ow

nl
oa

de
d 

by
 [

Jo
hn

s 
H

op
ki

ns
 U

ni
ve

rs
ity

] 
at

 1
1:

33
 1

6 
O

ct
ob

er
 2

01
5 


	Abstract
	1. Introduction
	2. Cross-slip mechanism and Kw lock formation
	3. Crystal plasticity constitutive model For Ni3Al single crystals
	3.1. Activation of cube-slip systems
	3.2. Dislocation density-based crystal plasticity model
	3.3. Hardening related to thermally activated cross-slip mechanism

	4. Calibration and validation of the proposed model
	4.1. Calibrating constitutive parameters
	4.1.1. Constitutive parameters for the yield state
	4.1.2. Constitutive parameters for the temperature state
	4.1.3. Constitutive parameters for the hardening state

	4.2. Validation of the APB Shearing Criterion
	4.2.1. Constant strain-rate simulations
	4.2.2. Creep simulations


	5. Summary
	 Acknowledgements
	 Disclosure statement
	Funding
	References



