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Abstract

A gradient-based shape optimization scheme using an Interface-enriched Generalized Finite Element Method (IGFEM) is
presented wherein the design geometry is projected onto a fixed mesh and the IGFEM is used for analysis. This approach
eliminates the mesh distortion present in conventional Lagrangian shape optimization methods, as well as the need for remeshing.
An analytical sensitivity analysis using both the adjoint or direct approaches is presented to compute derivatives of the objective
and constraint functions. Due to the fixed nature of the mesh, the so-called design velocity field only needs to be computed on
the structure boundary/interface. A comparison between IGFEM- and conventional FEM-based shape optimization schemes is
presented, showing an improved precision for the IGFEM approach. Finally, we solve various numerical examples to demonstrate
the capability of the method including the computational design of particulate and microvascular composites.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In shape optimization studies, the position of each material point in the domain or minimally on the boundary
and material interfaces is a function of the shape design variables [1]. Therefore, initial finite-element-based shape
optimization studies used the nodal coordinates as the design variables [2]. However, this approach was discarded
due to mesh irregularities and the excessive number of design parameters [3,4]. Several methods including mesh pa-
rameterizations [5–8] and natural design variables [9,10] were then suggested to overcome these problems. Filtering
techniques were also proposed to ensure boundary smoothness [11–14]. However, these Lagrangian shape optimiza-
tion approaches still face drawbacks. Namely, large shape changes during the optimization process cause excessive

∗ Corresponding author at: Department of Aerospace Engineering, University of Illinois at Urbana–Champaign, 104 South Wright Street, Urbana,
IL 61801, USA. Tel.: +1 217 244 7648; fax: +1 217 244 0720.

E-mail addresses: geubelle@uiuc.edu, geubelle@illinois.edu (P.H. Geubelle).

http://dx.doi.org/10.1016/j.cma.2015.07.024
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.07.024&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.07.024
http://www.elsevier.com/locate/cma
mailto:geubelle@uiuc.edu
mailto:geubelle@illinois.edu
http://dx.doi.org/10.1016/j.cma.2015.07.024


2 A.R. Najafi et al. / Comput. Methods Appl. Mech. Engrg. 296 (2015) 1–17

mesh distortion which deteriorates the accuracy of the finite element solution [15,16]. Although adaptive remeshing
can alleviate this issue, it increases the complexity and computational cost [4,15–17].

In contrast to Lagrangian methods, Eulerian approaches mitigate mesh distortion problems by projecting the design
domain over a fixed mesh [15,16,18,19]. These Eulerian methods incorporate mesh-free [20,21], fictitious domain
[15,17,19,22,23], material perturbation [24], level-set [16,18,25,26], and the generalized/extended finite element
methods (G/XFEM) [16,27–31].

In this paper, we present an Eulerian based shape optimization scheme that incorporates the Interface-enriched
Generalized Finite Element Method (IGFEM) [32,33]. Like its G/XFEM counterparts, the IGFEM is formulated on a
fixed mesh, thereby eliminating the mesh distortion problems associated with Lagrangian shape optimization schemes.
The proposed method optimizes the geometric parameters that explicitly define structural boundary/interfaces, in
contrast with level-set methods, which solve a partial differential equation, e.g., the Hamilton–Jacobi equation, to
update the interface.

A crucial ingredient in gradient-based optimization is the sensitivity analysis that computes the derivatives of the
objective and constraint functions with respect to the design variables. The computation of the design sensitivities has
been the topic of multiple studies [1,34–38], which can be classified in four broad categories: (i) overall or global fi-
nite differences, (ii) discrete derivatives or discretize then differentiate, (iii) continuum derivatives or differentiate then
discretize, and (iv) computational or automatic differentiation [38]. The latter three methods encompass either direct
or adjoint variants. Ultimately the choice of the method is based on designed level of desired accuracy, computational
efficiency, and implementation effort.

To perform the shape design sensitivity analysis, the boundary/interface nodes are parameterized by the shape
design variables [15,35]. A key component of any sensitivity analysis is the so-called design velocity field, i.e, the
derivative of the material point locations with respect to the design parameters. Due to the stationary nature of the
non-conforming mesh in the IGFEM shape optimization scheme, the design velocity field is only needed at the bound-
ary/material interface nodes to obtain the design sensitivity. In other words, in the present method, only the enriched
nodes on the boundary/interface move, appear or disappear during the shape optimization process.

In this study, a discrete derivative sensitivity analysis (ii) is implemented to avoid the technical difficulties encoun-
tered in the finite difference or semi-analytical schemes [16,27]. Problems in those methods occur when the boundary
is close to a node. In these situations the boundary may move to another element during the design perturbation step,
resulting in changes of the mesh topology, making the differentiation of the stiffness matrix and load vector prob-
lematic. The proposed analytical method has no such problem. However, as is the case in all G/XFEM methods, the
sensitivity analysis introduced in this study encounters a problem when the material interfaces pass through a node. In
these situations, only the directional derivatives of the stiffness matrix and load vector can be evaluated. This problem
is further described in Section 3.

The proposed approach extends the shape derivative method presented by [26] to the case of multiphase material
interfaces. A related analytical sensitivity study based on XFEM was presented in [31]. However, in that study, only
design-independent loading was considered and the shape sensitivity analysis only included the derivative of element
stiffness matrices. In contrast, the sensitivity analysis developed in the present study considers derivatives of both
stiffness matrices and force vectors. The latter involves shape derivatives of the FEM shape functions, which, to the
best of our knowledge, have been neglected in previous Eulerian-based methods.

The remaining part of this manuscript is organized as follows: in the next section, a brief introduction to the IGFEM
is presented. In Section 3, the optimization problem and the sensitivity analysis are described. The optimization
algorithm is presented in Section 4, followed, in Section 5, by examples which illustrate the proposed method.

2. Interface-enriched finite element method (IGFEM)

A recent addition to the family of Generalized/Extended Finite Element Methods (G/XFEM), the IGFEM was
introduced by Soghrati et al. [32,33] to capture gradient discontinuities present along material interfaces using
non-conforming meshes. In the IGFEM, the enrichment functions and the associated generalized dofs are created
by inserting nodes at the intersections of the interface with the boundaries of the non-conforming elements [32].
This contrasts with conventional G/XFEM where the generalized dofs are associated with duplicated nodes of the
non-conforming elements [39,40]. However, similar to G/XFEM, for integration purposes the IGFEM relies on the
subdomains decomposition that conforms to the material interface in the enriched elements. This contrasts other
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Fig. 1. Schematic of the geometry and boundary conditions. A subset of the non-conforming finite element mesh is also shown.

approaches such as the finite cell method [41–43], where integration over bi-material cells is performed using adaptive
composite Gaussian quadrature schemes wherein the integration sub-cells do not conform to the interface.

To illustrate the IGFEM formulation, we consider its application to steady-state heat conduction problems, although
some of the examples provided in Section 5 also involve structural applications. As shown in Fig. 1, the domain
Ω = ∪

NΩ
i=1 Ωi ⊂ R2,∩

NΩ
i=1 Ωi = ∅ with closure Ω̄ is bounded by ∂Ω = Ω̄ − Ω with outward normal vector n, where

NΩ is the number of subdomains Ωi , i = 1, 2, . . . , NΩ . The boundary ∂Ω is split into two complementary subsets Sq

and Su , i.e., ∂Ω = Su
∪ Sq and Su

∩ Sq
= ∅, over which heat flux q and temperature ū are prescribed. It is assumed

that the material interfaces are smooth and are defined by Γ = ∪
NΓ
i=1 Γi ⊂ R and satisfy ∩

NΓ
i=1 Γi = ∅, where NΓ is

the number of interfaces. The normal vector on each material interface Γi is denoted as ni .
In the IGFEM, we discretize the domain Ω u Ωh with a mesh that does not conform to the material interfaces. The

temperature field in each element intersected by an interface takes the form [32,44]

uh (X) =

n
i=1

Ni (X) ui +

nψ
j=1

ψ j (X) α j =

N (X) Ψ (X)

 
U
A


, (1)

where the first sum on the right hand side of (1) represents the classical finite element approximation with the n
standard finite element shape functions Ni (X) and the standard nodal dofs ui , and the second sum represents the
augmented contribution with the nψ enrichment functions ψ j (X) and their associated generalized dofs α j . In the
IGFEM, generalized dofs are assigned to the interface nodes, which are inserted to the locations where the interface
intersects the element edges.

To evaluate enrichment functions ψ j (X), consider an enriched (parent) element with domain Ωe that is divided

into two subdomains Ω (1)
e and Ω (2)

e by the internal interface (Fig. 2). These subdomains serve as the integration (chil-
dren) elements, wherein the enrichment functions corresponding to the interface nodes E1 and E2 are the standard
Lagrangian shape functions defined piecewise over the integration elements as

ψ1 (X) =


ψ
(1)
1 (X) = N (1)

1 (X) ∀X ∈ Ω (1)
e

ψ
(2)
1 (X) = N (2)

2 (X) ∀X ∈ Ω (2)
e ,

ψ2 (X) =


ψ
(1)
2 (X) = N (1)

2 (X) ∀X ∈ Ω (1)
e

ψ
(2)
2 (X) = N (2)

1 (X) ∀X ∈ Ω (2)
e .

(2)

Since the standard Lagrangian shape functions are used to construct the enrichment functions ψ j (X), by definition
they vanish at the nodes and the edges of the element that do not intersect the interface. For example, for an enriched
3-node triangular element Ωe, N (X) appearing in (1) is a 1 × 3 row vector, composed of the standard Lagrangian
shape functions associated with Ωe, while Ψ (X) is a 1 × 2 row vector, containing the shape functions ψ1 and ψ2
corresponding to the enriched interface nodes E1 and E2, as shown in Fig. 2.

As usual, we use the derivatives of the shape functions to approximate the thermal gradients as

∂uh (X)
∂X

=


∂N (X)
∂X

∂Ψ (X)
∂X

 
U
A


=


BN (X) Bψ (X)

 
U
A


, (3)

where the definition of BN and Bψ are self evident.
For heat conduction problems, the implementation of the IGFEM results in the following system of equations:

KU = F, (4)
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Fig. 2. Creation of integration elements: (a) schematic of an enriched element, which is cut by an interface; (b) two integration elements used to
compute the shape functions.

where U is the global nodal solution vector, F denotes the global nodal force vector, and K is the global stiffness
matrix. As usual, K is assembled from the element stiffness matrices Ke,

Ke
=


Ωe

BT (X)D (X)B (X) dΩ , (5)

where D is the thermal conductivity matrix, and

B (X) =

BN (X) Bψ (X)


. (6)

Substituting (6) into (5) results in

Ke
=


Ke

uu Ke
uα

Ke
αu Ke

αα


, (7)

where

Ke
uu =

2
i=1


Ω (i)

e

BT
N (X)D (X)BN (X) dΩ ,

Ke
uα =

2
i=1


Ω (i)

e

BT
N (X)D (X)Bψ (X) dΩ , (8)

Ke
αu =

2
i=1


Ω (i)

e

BT
ψ (X)D (X)BN (X) dΩ ,

Ke
αα =

2
i=1


Ω (i)

e

BT
ψ (X)D (X)Bψ (X) dΩ .

The above holds for the elements that are intersected by the interface; for the all the other elements Bψ = 0 and the
element stiffness matrix takes the usual form. Similarly, the global nodal force vector F in (4) is assembled from the
element nodal force vector Fe,

Fe
=


Ωe

NT (X) Q (X) dΩ +


Γe∩Sq

NT (X) q (X) dΓ , (9)

where Q and q are the heat source and applied heat flux defined on element Ωe and element boundary Γe ∩ Sq ,
respectively, and N is the element shape function vector, given as

N (X) =

N (X) Ψ (X)


. (10)

Substituting (10) into (9) leads to

Fe
=


Fe

u
Fe
α


, (11)
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Fig. 3. Mappings used to evaluate the shape functions at an integration point X. f̃ (2)c (rc) is the mapping from the master element Ω̃
(2)
c to the

integration element Ω
(2)
e , whereas f̂ p


rp


maps the master element Ω̂p to the element Ωe (triangle 1 − 2 − 3), and fcp


rp


is a composite

mapping defined as f̂↓p ◦ f̃(2)c .

where

Fe
u =

2
i=1


Ω (i)

e

NT (X) Q (X) dΩ +


Γ (i)

e ∩Sq
NT (X) q (X) dΓ


,

Fe
α =

2
i=1


Ω (i)

e

ΨT (X) Q (X) dΩ +


Γ (i)

e ∩Sq
ΨT (X) q (X) dΓ


. (12)

As with the element stiffness matrix, Fe
α ≠ 0 for only the intersected elements.

We use a standard isoparametric FEM wherein the integrals that define the element stiffness matrices and load vec-
tors are computed via Gaussian quadratures. However, this requires special care over the enriched elements due to dis-
continuity of the interpolation, as the enriched element Ωe must be split into its two integration elements Ω (1)

e and Ω (2)
e .

To this end and without loss of generality, we refer the reader to Fig. 3, which illustrates the required isoparametric
mappings for evaluating the shape functions over the integration element Ω (2)

e of Fig. 2. As seen in Fig. 3, a master in-
tegration element Ω̃ (2)

c is the image of the integration element Ω (2)
e under the map f̃(2)c , i.e., f̃(2)c : Ω̃ (2)

c → Ω (2)
e such that

X = f̃(2)c (rc)

= Ñ(2)c (rc)X(2)e , (13)

where X(2)e is a 4×2 matrix corresponding to the nodal coordinates of the integration element Ω (2)
e , and Ñ(2)c is a 1×4

row vector containing the Lagrangian shape functions defined over the master element Ω̃ (2)
c . Note that f̃(2)c (rc) = X

is a row vector and thusly its derivatives will be transpose that of the “usual” result.
Fig. 3 also shows that the enriched element Ωe is the image of the master enriched element Ω̂p under the map f̂p,

i.e., f̂p : Ω̂ (2)
p → Ωe such that

X = f̂p

rp


= N̂p


rp


Xe, (14)

where Xe is a 3 × 2 matrix composed of the nodal coordinates of the enriched element Ωe, and N̂p is a 1 × 3 vector
containing the Lagrangian shape functions defined over the master element Ω̂p.

Using the above mappings, the shape functions for integration element Ω (2)
e takes the form

N (X) |X=f̂p(fcp(rc))=f̃(2)c (rc)
=


N


X |X=f̂p(fcp(rc))


Ψ(2)


X |X=f̃(2)c (rc)


=


N̂p


rp


|rp=fcp(rc)

Ψ̃
(2)
(rc)


=


N̂p ◦ fcp (rc) Ψ̃

(2)
(rc)


, (15)
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where Ψ̃
(2)

is a 1 × 2 row vector containing the Lagrangian shape functions in Ñ(2)c which are associated to the
enriched interface nodes E1 and E2, as shown in Figs. 2 and 3 and Eqs. (1) and (10). The shape function Ψ(2) is
evaluated at X ∈ Ω (2)

e ⊂ Ωe by using the mapping f̃(2)c from the master element Ω̃ (2)
c to the integration element Ω (2)

e ,
i.e., f̃(2)c : Ω̃ (2)

c → Ω (2)
e (Fig. 3). On the other hand, N is evaluated at X ∈ Ω (2)

e ⊂ Ωe using the mapping f̂p : Ω̂p

→ Ω (2)
e . In performing integrations over Ω (2)

e , however, we require that N be evaluated via a map from Ω̃ (2)
c . This is

done by introducing the composite map fcp = f̂↓p ◦ f̃(2)c : Ω̃ (2)
c → Ω̂p defined such that

rp = fcp (rc) = f̂↓p ◦ f̃(2)c (rc) = f̂↓p


f̃(2)c (rc)

, (16)

where f̂↓p : Ω (2)
e → Ω̂p is the inverse map of f̂p. Implementing the mappings presented in Fig. 3, the computation of

BN for integration element Ω (2)
e over its corresponding master element Ω̂ (2)

e takes the form

BN (X) |X=f̂p(rp)
=

∂

∂X
N


X |X=f̂p(rp)


= Ĵ−1

p


rp

 ∂N̂p

rp


∂rp

|rp=fcp(rc)
, (17)

where we define the derivatives

∂N̂p

rp


∂rp

=


∂ N̂p1


rp


∂rp1

∂ N̂p2

rp


∂rp1

∂ N̂p3

rp


∂rp1

∂ N̂p1

rp


∂rp2

∂ N̂p2

rp


∂rp2

∂ N̂p3

rp


∂rp2

 (18)

and where

Ĵp

rp


=


∂


f̂p


rp


1

∂rp1

∂


f̂p

rp


2

∂rp1

∂


f̂p

rp


1

∂rp2

∂


f̂p

rp


2

∂rp2

 =
∂ f̂p


rp


∂rp

(19)

is the Jacobian of mapping from the master element Ω̂p to the enriched element Ωe. Similarly,

B(2)ψ (X) |X=f̃(2)c (rc)
=

∂

∂X
Ψ(2)


X |X=f̃(2)c (rc)


= J̃−1

c (rc)
∂Ψ̃

(2)
(rc)

∂rc
, (20)

where J̃c (rc) =
∂ f̃(2)c (rc)
∂rc

and ∂Ψ̃
(2)

∂rc
are defined analogously to Ĵp and ∂N̂p

∂rp
. The presence of fcp in (17) will affect the

sensitivity analysis as seen shortly.

3. Optimization problem formulation and sensitivity analysis

A general finite-element-based shape optimization problem can be specified as [14]

min
d

g (U(X(d),d), X(d), d) ,

such that: h j (U(X(d)), X(d), d) ≤ 0, (21)

with j = 1, 2, . . . , l,

and K (X(d))U (X(d),d) = F (X(d)) ,
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where g is the cost or objective function to minimize, h j denotes the constraint functions, X denotes the nodal
coordinate vector, and d is the design variable vector. Note that X, K, U and F are all functions of d.

To perform a gradient-based optimization, a sensitivity analysis is needed to compute the gradients of objective
and constraint functions with respect to the shape design variables. In the current study, the design variables are
the geometrical parameters that define the material interfaces Γi . For instance, in an inclusion design problem with
circular particles embedded in a matrix, the radius and center coordinates of the inclusions can serve as the shape
design variables. Finite-element-based shape optimization presents two key challenges: (i) evaluating the mapping X
from the design space to the node coordinate space, and (ii) computing the design velocity field, i.e., the derivative
∂X(d)/∂d for sensitivity analysis [14].

The sensitivity analysis of the cost and constraint functions is conducted by using an analytical discrete derivatives
approach based on the direct and adjoint methods. Indeed, following the direct differential sensitivity analysis, the
sensitivity of objective function expressed in (21) is obtained as

dg

ddi
=


∂g

∂U

T
⋆

Ui +


∂g

∂X

T

Vi +
∂g

∂di
(22)

where the partial derivatives of ∂g
∂U , ∂g

∂X , and ∂g
∂di

are explicitly evaluated and the shape material derivative
∗

Ui =
∂U
∂di

is
computed in the pseudo analysis.

In the pseudo analysis the discrete linear system of equation (4) associated with the primal problem is differentiated
with respect to each of the shape design variables di , resulting in a series of pseudo problems

K
∗

Ui = Pi
ps, (23)

where Pi
ps is the pseudo-load vector defined as

Pi
ps =

∂F
∂di

−
∂K
∂di

U. (24)

The terms entering (24) are computed by assembling the element quantities:

∂Ke

∂di
=


M11 M12
M21 M22


+


Ωe

BT DB div(Vi ) dΩ , (25)

∂Fe

∂di
=


Ωe


∂NT

∂di
Q + NT


∗

Qi + Q div (Vi )


dΩ +


Γe∩Sq


∂NT

∂di
q + NT


∗
q i + q divΓ (Vi )


dΓ . (26)

In (26),
∗

Qi and
∗
q i denote the material derivatives of heat source and heat flux with respect to di , respectively, while

div and divΓ are the divergence and surface divergence, defined below (see Eqs. (30) and (31)). The Mi j matrices
entering (25) are defined as

M11 =

2
j=1


Ω ( j)

e


BT

N D
∂BN

∂di
+ BT

N

∗

D BN +
∂BT

N

∂di
DBN


dΩ ,

M12 = MT
21 =

2
j=1


Ω ( j)

e


BT

N D
∂Bψ
∂di

+ BT
N

∗

D Bψ +
∂BT

N

∂di
DBψ


dΩ ,

M22 =

2
j=1


Ω ( j)

e


BT
ψD

∂Bψ
∂di

+ BT
ψ

∗

D Bψ +
∂BT

ψ

∂di
DBψ


dΩ .

(27)

where
∗

D is the material derivative of D which we assume is zero hereafter.
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The design velocity field Vi entering (25)–(26) must only be computed for the enriched elements. Considering
Fig. 3 and (13), Vi in the integration element Ω (2)

e is evaluated as the row vector

Vi (X) |X=f̃(2)c (rc,d)
=
∂X (d)
∂di

=
∂ f̃2

c (rc,d)
∂di

= Ñ(2)c (rc)
∂X(2)e (d)
∂di

= Ñ(2)c (rc)V(2)ei (d) , (28)

where V(2)ei (d) =
∂X(2)e (d)
∂di

denotes the 4 × 2 nodal shape velocity matrix of integration element Ω (2)
e . Note that all

the nodal velocities, except those of the enriched nodes E1 and E2 on the material interface, are zero. The spatial
derivative of the design velocity,

∂Vi (X,d)
∂X

|X=f̃(2)c (rc)
= B(2)c (X,d)V(2)ei (d) , (29)

is a 2 × 2 matrix, which can be used to compute

div (Vi ) = tr

∂Vi

∂X


, (30)

and

divΓ (Vi ) = tr


I − nnT
 ∂Vi

∂X


, (31)

where n is the outward unit normal vector to Γ . In the above B(2)c (X) |X=f̃(2)c (rc)
= J̃−1

c (rc)
∂Ñ(2)c (rc)
∂rc

is defined

analogously to B(2)ψ (X), cf. (20).

By definition, BN

rp


= Ĵ−1

p


rp

 ∂N̂p(rp)
∂rp

. Since both the Jacobian Ĵp defined in (19) and the derivatives of the

shape functions ∂N̂p(rp)
∂rp

are constant for the three-node triangular elements used in this study, ∂BN
∂di

, appearing in

the bulk matrix M11 and M12 in (27) vanishes. However, the sensitivity ∂Bψ
∂di

in each integration element, e.g., the
integration element (2) in Fig. 3, is given by

∂B(2)ψ
∂di

=
∂ J̃−1

c

∂di

∂Ψ̃
(2)

∂rc
, (32)

where ∂ J̃−1
c
∂di

is obtained from

∂ J̃−1
c

∂di
= −J̃−1

c
∂ J̃c

∂di
J̃−1

c , (33)

with

∂ J̃c (rc,d)
∂di

=
∂Ñ(2)c (rc)

∂rc
V(2)ei (d) . (34)

In (26), the Qdiv (Vi ) term is computed using (30) and we assume without loss of generality that the material

derivative of the heat source,
∗

Qi , is zero. Furthermore, we note that the last integral in (26) is zero for the internal
boundary design problems investigated in the present study. However, the ∂NT

∂di
term in (26), i.e., the derivative of the

shape functions with respect to the design variables, is not zero in this IGFEM study, as opposed to regular FEM. To
clarify this point, let us derive this sensitivity. As seen in (15), the shape function vector N in an enriched element
is defined in terms of N̂p and Ψ̃ and is evaluated over the master integration element, e.g., at location rc in Ω̃ (2)

c

in Fig. 3. The enriched shape function Ψ̃ is independent of d. Therefore, the derivatives of Ψ̃ with respect to the
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Fig. 4. Schematic of intersection of a material interface with the edges of non-conforming mesh.

design variables vanish, cf. the discussion following (15). On the other hand, N̂p ◦ fcp is not independent of the design
variables. Therefore, the derivative ∂N(X)

∂di
is not zero. Using Fig. 3 and (17), the sensitivity ∂N(X)

∂di
can be obtained as

∂N


f̂p

rp


∂di


rp=fcp(rc)

=
∂N̂


rp


∂di


rp=fcp(rc,d)

=
∂fcp (rc, d)

∂di

∂N̂

rp


∂rp


rp=fcp(rc,d)

=
∂ f̃c (rc, d)

∂di

∂ f̂↓p (X)
∂X


X=f̃c(rc,d)

∂N̂

rp


∂rp


rp=fcp(rc,d)

=
∂ f̃c (rc, d)

∂di


∂ f̂p


rp


∂rp

−1

rp=fcp(rc,d)

∂N̂

rp


∂rp


rp=fcp(rc,d)

= Vi Ĵ−1
p
∂N̂
∂rp


rp=fcp(rc,d)

= Vi BN |rp=fcp(rc,d) (35)

where we use the fact that
∂ f̂↓p
∂di

is zero.

Although a similar analytical sensitivity analysis was performed for the G/XFEM in [31], to the best of our
knowledge, this is the first time that the sensitivity of the shape functions with respect to design parameters is
introduced and computed. The correct extraction of the shape sensitivity in G/XFEM and IGFEM requires the
inclusion of this term.

To complete the pseudo analysis of (23), it is necessary to compute the velocity field Vi . In the IGFEM, the mesh
is fixed and therefore only the enriched nodes on material interfaces move. Consequently, computing the enriched
node velocity field suffices to complete the sensitivity analysis. The enriched nodes are added at the intersections of
the material interfaces with the non-conforming element edges (Fig. 4). The intersection point X̆ = (x̆, y̆) is found by
solving the system of equations:

y̆ = a x̆ + b
y̆ = S (x̆,d) ,

(36)

where the first equation in (36) is the element edge equation, and the second one describes the material interface. The
derivative of the above equation with respect to the design variable di gives the two components of the velocity of the
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enriched node:

(Vx )i =

∂S(x̆,d)
∂di

a −
∂S(x̆,d)
∂x

and

Vy


i = a (Vx )i . (37)

In the rare event that the material interface passes exactly through a node of the non-conforming mesh, (37) is not
applicable. Two approaches can be considered in this situation: (i) introducing a very small perturbation in the design
variable, or (ii) perturbing the location of that node in the background mesh. Both approaches have proven successful
for our numerical studies. In our example problems we follow (ii).

Summarizing, in the direct differentiation sensitivity analysis for each parameter di we evaluate the pseudo load

Pi
ps and solve (23) to evaluate the shape material derivative

∗

Ui . Having the
∗

Ui , we compute the sensitivity (22) for the
cost and constraint functions.

Alternatively, the sensitivity of objective function can be evaluated using the adjoint method by annihilating
∗

Ui
from (22). Regarding the adjoint method sensitivity analysis, for each function, e.g. g, we compute the adjoint response
λg such that

Kλg =


∂g

∂U

T

, (38)

and evaluate the sensitivity via

dg

ddi
=


∂g

∂X

T

Vi +
∂g

∂di
+ λT

g Pi
ps, (39)

where Pi
ps is defined in (24).

4. Algorithm

Based on the equations described in the previous section, the gradient-based IGFEM shape optimization algorithm
can be summarized as follows:

1. Assign an initial guess for the design variables: d = d0
Loop until converged

2. Implement IGFEM
(a) Find intersection points
(b) Update mesh by adding new nodes at intersection points
(c) Apply enrichments to intersected elements

3. Solve KU = F for nodal solution U (4)
4. Compute objective and constraint functions
5. Compute pseudo-load vector (24)

(a) Compute interface node velocity field V
(b) Compute derivative of global stiffness matrix
(c) Compute derivative of global load vector

6. Perform adjoint analysis (38)
7. Compute sensitivity of objective and constraint functions (39)
8. Update the design variables

End Loop

To conclude the presentation of the shape optimization scheme, it is worth emphasizing that, like other gradient-
based methods, one cannot guarantee convergence to a global optimum in the presence of multiple local optima. The
analysis might therefore require the use of multiple initial guesses for the initial design. Once again, by avoiding
the need to generate a conforming mesh for each starting geometry, the IGFEM approach greatly facilitates this
process: only the mathematical description of the internal material interfaces is needed to define the model on the
non-conforming stationary mesh [44].
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5. Numerical examples

In this section, we apply the IGFEM shape optimization scheme to several 2D thermal and structural problems to
verify and illustrate the proposed method. The first two examples are used as thermal and structural benchmarks for
the current work. The third problem involves the shape optimization of a microvascular material for high tempera-
ture applications, while the last application optimizes the distribution of inclusions in a structurally loaded particulate
composite.

5.1. Thermal verification problem: circular inclusion

In this first example, we consider the simple problem of a circular inclusion of radius R, with thermal conductivity
κ2 and distributed heat source Q2 embedded in a square domain of size L (with thermal conductivity κ1 and heat
source Q1) subjected to a heat flux q uniformly applied along its bottom edge (Fig. 5(a)). The left and right edges are
insulated, while the top edge is kept at a fixed temperature T0. The optimization problem consists of finding the in-
clusion radius R that maximizes the average temperature along the bottom edge T̄b. For the dimensions (L = 0.1 m),
thermal loading (q = 1000 W/m2, T0 = 20◦C, Q1 = 10 W/m3, and Q2 = 50,000 W/m3) and thermal properties
(κ1 = 17 W/mK and κ2 = 100 W/mK), T̄b reaches a maximum of 26.82◦C at R/L = 0.31, as shown in Fig. 5(g).

Fig. 5(b) and (c) illustrate the application of the IGFEM shape optimization scheme to this verification problem,
starting from an initial value of the inclusion radius R/L = 0.1, as indicated by the blue contours intersection points
in Fig. 5(b). The red dots on the same figure denote the converged shape of the inclusion and the resulting thermal
field is presented in Fig. 5(c). The convergence history is shown by the solid curves in Fig. 5(h), with the blue curve
denoting the evolution of T̄b and the green curve that of the ratio R/L . As apparent there, the optimal solution rapidly
converges to the aforementioned exact values (denoted by the dotted horizontal lines).

For comparison, Fig. 5(d)–(f) illustrate the solution of the same shape optimization problem using a conventional fi-
nite element scheme with meshes that conform to the evolving particle size, starting again from an initial guess R/L =

0.1 (Fig. 5(d)). As the particle size increases, the elements inside the particle are stretched, while those outside the
inclusion undergo substantial distortions, which leads to a loss of precision as shown by the dashed curves in Fig. 5(h).
This simple example illustrates the key advantage of the proposed method that relies on a fixed non-conforming mesh.

5.2. Structural verification problem: elliptical inclusion

In this second verification problem, we optimize the shape of an elliptical inclusion embedded in a matrix to
minimize the compliance subject to a prescribed inclusion area constraint. The problem is solved in plane strain and the
square domain (of size L) is subjected to a uniform traction σ0 along its top edge, while ‘roller boundary conditions’
are assumed along the bottom edge as depicted in Fig. 6(a). The matrix is stiffer than the inclusion with material
properties E1/E2 = 10 and ν1 = ν2. The design variables are the size of the major a and minor b axes of the ellipse,
and the inclusion area constraint is ab = 0.02L2. The range of the minor and major radii are 0.1L ≤ a, b ≤ 0.2L .
This example resembles a classical benchmark for shape optimization in which the axis lengths and orientation of an
elliptical inclusion of area A embedded in an infinite media are optimized to minimize compliance. The analytical
solution requires that the axes be aligned with the far-field principle strain directions and that the ratio of the semi-
major axis to semi-minor axis equals the ratio of the far-field principle strains [45]. In our example, since the loading
is uniaxial, the matrix and inclusion are isotropic and there are constraints for the range of the minor and major radii
for a constant area, the optimal shape of a compliant elliptical inclusion embedded in a stiff matrix is expected to be an
ellipse with the major axis in the direction of far-field stress. The results illustrated in Fig. 6(b) show that, starting from
an initial guess a/L = 2b/L = 0.2 (yellow outline in Fig. 6(c)), the solution converges in less than 20 iterations to the
expected optimum design 2a/L = b/L = 0.2 (red outline in Fig. 6(c)). The von Mises stress distributions associated
with the initial and optimal designs are plotted on their respective deformed configurations in Fig. 6(d) and (e).

5.3. Thermal application: microvascular materials

In [44,46], the results of a parametric design of an actively cooled woven microvascular composite plate with
sinusoidal and straight microchannels were summarized. In this third problem, we use the IGFEM-based shape
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L

Fig. 5. Comparison between conventional FEM vs. IGFEM-based shape optimization (a) Problem description; (b) Initial (blue) and optimum
(red) shapes, and (c) optimal temperature field for the IGFEM approach; Initial (d), optimum shape (e), and optimal temperature field (f) for the
conventional FEM scheme; (g) T̄b vs. R solution obtained through a parametric numerical study, showing a maximum value at R/L = 0.31;
(h) Design convergence history, with the dotted horizontal curves denoting the exact optimal values of the average temperature and inclusion radius
given in (g). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

optimization scheme to investigate the similar (though simpler) 2D problem shown in Fig. 7, wherein fluid flows
through a sinusoidal microchannel (of fixed diameter d = 500 µm) defined by its wavelength λ = 1 cm and amplitude
A to cool a rectangular domain of length L = 10 cm and height H = 6 mm. The goal of the design is to optimize the
amplitude A to minimize the average temperature on the bottom edge (T̄b).

The domain is subjected to a uniform heat flux q = 10 kW/m2 applied along its bottom edge, while a Dirichlet
boundary condition (T0 = 20◦C) is applied along the top boundary. The microvascular medium is made of epoxy
(κ = 0.45 W/m.K). Cooling is achieved by pumping water (κ = 0.6 W/m.K, ρ = 1000 kg/m3, cp = 4183 J/kgK)
through the channel with a flow rate Q and an inlet temperature Tinlet = 20◦C. The centerline locations for the inlet
and outlet are set at a distance d from the lower edge. Assuming fully developed Poiseuille flow conditions, the
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Fig. 6. Shape optimization for a compliant elliptical inclusion embedded in a stiff matrix: (a) Problem description; (b) Convergence and design
history; (c) Initial (yellow outline) and optimum (red outline) designs; (d) and (e) von Mises stress distributions corresponding to the initial and
optimum designs over the deformed configurations, with the displacements scaled by 0.26 × E2/σ0. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

A

Fig. 7. Shape optimization of a sinusoidal microchannel embedded in a rectangular domain: problem geometry and thermal loading conditions.
The lower figure shows details of the non-conforming finite element mesh used in the IGFEM analysis.
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Fig. 8. Shape optimization for sinusoidal microchannel shown in Fig. 7 with flow rate Q = 1 ml/min: (a) Initial design; (b) Magnified view with
non-conforming mesh; (c) Convergence history of the average temperature along the bottom edge (T̄b) and of the microchannel amplitude (A);
(d) Optimal design; (e) and (f) Initial and optimal temperature distributions.

velocity profile over the cross section of the sinusoidal microchannel is expressed as [47]

V = Vmax


1 −


r

d/2

2


et , (40)

where Vmax = 8Q/πd2 is the maximum velocity of the coolant, r is the distance from the microchannel centerline
and et is the tangent vector directed along the center line. The cooling is modeled by adding the convective term
Ke

conv =

Ωe

NT ρcpVB dΩ to the microchannel element stiffness matrices and its derivative to (25). Details on the
finite element formulation for this problem can be found in [32].

As shown in [44] and [46], the optimum configuration of the microchannel depends on the flow rate Q: for low
flow rate values, the optimum solution corresponds to a wavy microchannel with maximum amplitude A, while,
at higher flow rates, a straight microchannel (A = 0) located close to the lower (hot) edge is most effective at
cooling the domain. In an attempt to reproduce these results using the proposed gradient-based IGFEM shape opti-
mization scheme, we aim to find the optimum value of A. The allowable range for A is chosen to be bounded by
0 ≤ A ≤ Amax =

 H
2 − d


such that the centerline of the microchannel is at least a distance d of the upper and lower

edges.
The solution corresponding to a higher flow rate value (Q = 1 ml/min) is presented in Fig. 8. Starting from an ini-

tial guess corresponding to the maximum allowable value for the microchannel amplitude (A = 2.5 mm, Fig. 8(a)), the
optimizer converges to the optimal configuration with a straight microchannel (Fig. 8(d)) in two iterations (Fig. 8(c)).
As shown in Fig. 8(c), the average temperature along the bottom edge of the domain reduces from 59◦C to about
30◦C. The temperature fields for the initial and optimal designs are presented in Fig. 8(e) and (f).

To study the aforementioned impact of the flow rate on the optimum shape of the microchannel, we repeat the
example with Q = 0.05 ml/min, starting from A = Amax/2. In contrast with the results obtained for Q = 1 ml/min,
the solution converges to the configuration with the maximum allowable amplitude. The results are illustrated in
Fig. 9.

5.4. Structural application: particulate composites

In the example presented in this section, the design variables are the radii and locations of five circular inclusions
(of stiffness E2 and Poisson’s ratio ν2) embedded in a square linearly elastic plane strain plate (of length L = 0.1 m,
stiffness E1 = E2/10 and Poisson’s ratio ν1 = ν2) subjected to a linearly varying distributed traction applied along its
upper edge (Fig. 10(a)). We minimize the compliance of the composite subject to a maximum inclusions area fraction



A.R. Najafi et al. / Comput. Methods Appl. Mech. Engrg. 296 (2015) 1–17 15

20
40
60
80
100

Fig. 9. Shape optimization for sinusoidal micro-channel shown in Fig. 7 with the lower flow rate Q = 0.05 ml/min: (a) and (b) Initial and optimal
designs; (c) Convergence history of the average temperature along the bottom edge (T̄b) and of microchannel amplitude (A); (d) and (e) Initial and
optimal temperature distributions.

Fig. 10. (a) Problem description for a plate with five inclusions; (b) Convergence history of the structure compliance for eight different initial
designs.

constraint (A f ≤ 0.1125π ). To prevent overlapping, we also impose that the distance Ci j between inclusions i and
j satisfy Ci j ≥ Ri + R j + 0.03L . The design variables are bounded as 0.03L ≤ Ri ≤ 0.2L and 0.2L ≤ Xci , Yci
< 0.8L .

The convergence histories of the compliance for eight trials with different initial designs are presented in Fig. 10(b).
The figure shows that the convergences are stable and that all of the trials except one converge to very similar optimal
values for compliance. The initial and final designs for four trials are illustrated in Fig. 11. As apparent there, the
inclusions move to the right to minimize the compliance due to unsymmetrical loading.

6. Conclusions

A gradient-based shape optimization over a fixed mesh based on the recently introduced Interface-enriched
Generalized Finite Element Method (IGFEM) has been developed, taking advantage of both Eulerian and Lagrangian
approaches to eliminate mesh distortion issues as well as to represent geometrical features accurately. Furthermore,
the analytical sensitivity analysis adapted in this work circumvents issues commonly encountered in finite difference
and semi-analytical sensitivity approaches. By substantially simplifying the meshing process and avoiding remeshing,
the proposed method also provides a very efficient way to simulate multiple initial configurations when searching for
a global optimum.
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Fig. 11. Initial and optimal designs for the problem shown in Fig. 10 corresponding to four different initial designs.

The method has been verified with and applied to various 2D structural and thermal multi-inclusion and
microvascular problems. The results have shown that the proposed method converges to the optimum solution
accurately and efficiently.
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