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A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is 
introduced to solve problems with complex discontinuous gradient fields observed in 
the analysis of heterogeneous materials. The method utilizes simple structured meshes 
of hexahedral elements that do not necessarily conform to the material interfaces 
in heterogeneous materials. By avoiding the creation of conforming meshes used in 
conventional FEM, the NIGFEM leads to significant simplification of the mesh generation 
process. To achieve an accurate solution in elements that are crossed by material interfaces, 
the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field 
locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark 
problem. We observe that the NIGFEM preserves an optimal rate of convergence, and 
provides additional advantages including the accurate capture of the solution fields in the 
vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. 
Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is 
discussed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The performance of materials is often linked to their microstructure, and the predictive modeling of the structure/prop-
erty relationship for the complex materials has long been a topic of interest in the computational mechanics community. 
One of the key challenges in this line of work is associated with complexity of the microstructure. While the finite element 
method has emerged as the method of choice due primarily to its flexibility, the accurate capture of complex microstructure 
using meshes that conform to the material interfaces constitutes a challenging and time-consuming task, often representing 
over 80% of the total analysis time [1]. This is especially true when a large number of virtual models have to be created to 
capture the statistical nature of the microstructure geometry.

Of particular interest in the current work is the direct conversion of actual microstructural information to FE models. 
Substantial progress has been achieved over the past two decades in the development of robust and efficient algorithms 
that allow converting the voxel arrays associated with images to structured and unstructured FE models. Some of these 
approaches rely on the direct voxel-to-element translation to create a structured grid of hexahedral elements [2–4]. While 
this approach is particularly attractive due to its simplicity and robustness, it tends to create staircase representations of 
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material interfaces [5], which might affect the solution unless an extremely refined (and computationally expensive) finite 
element model is adopted [4]. Another approach, based on discrete representation of the material interfaces combined with 
the generation of unstructured finite element meshes that conform to these interfaces [6,5,7], has shown to represent more 
accurately the geometrical details of the interface. However, the generation of conformal meshes is tedious and far from 
robust especially for a 3D domain with complex material interfaces [8], and it often requires sophisticated tools [9]. These 
methods usually regularize material interfaces, limit the discretization to tetrahedral elements, and require user interven-
tion. Further, they lead to meshes containing degenerate [6,5] and poorly shaped elements with high aspect ratios [10]. 
Many research activities have focused on enhancing the robustness and accuracy of these methods [11–13,8]. However, 
although they tend to improve the resulting mesh quality, these techniques also tend to lead to very large finite element 
discretizations.

To address these issues and move some of the complexity from computational geometry to the finite element formu-
lation, generalized (extended) finite element methods (G/XFEM) [14–21], unfitted FEM [22], and CutFEM [23] have been 
suggested that avoid the need for conforming mesh generation. Among these techniques, we highlight a recently developed 
generalized finite element method, referred to as Interface-enriched Generalized Finite Element Method or IGFEM [24,25], 
which allows for the capture of material interfaces using meshes that do not conform to the materials microstructure. In this 
method, the additional degrees of freedom (dofs) are introduced along the intersections of the material interfaces with the 
edges of the non-conforming mesh and linear Lagrangian basis is used as enrichment. This method has recently been ex-
tended to NURBS-based Interface-enriched Generalized Finite Method (NIGFEM) [26,27], which incorporates directly into the 
finite element formulation the NURBS representation of the surfaces defining the material interfaces. Non-Uniform Rational 
B-Splines (NURBS) [28,29] are used widely in CAD to represent complex geometries. By incorporating directly the NURBS 
representation into the finite element formulation of the non-conforming elements intersected by the material interfaces, 
the NIGFEM greatly simplifies the mesh generation process while providing the same accuracy and convergence properties 
as those of conventional FEM based on conforming meshes. Similar ideas were presented in the context of regular FEM [30]
and G/XFEM [31,32].

In addition to easing the mesh generation for complex geometries, NIGFEM, like its G/XFEM counterparts, can simplify 
the meshing step for problems involving moving boundaries and continuous geometrical and topological changes [33,34], 
thereby avoiding complex and costly adaptive remeshing. The use of hexahedral elements, which are usually preferred to 
tetrahedral elements in structural problems [35], is another advantage of the proposed method for investigating 3D problems 
with complex geometries.

In this study, we extend the NIGFEM to 3D modeling of heterogeneous materials and investigate its properties. In Sec-
tion 2, we discuss the formulation of NIGFEM for structural problems. This section starts with a brief introduction to NURBS 
and its key properties. We then discuss the construction of NURBS-based enrichment functions utilized by NIGFEM and 
associated finite element formulation. In Section 3, we present a detailed convergence study of NIGFEM. In the last section, 
we provide two application problems to illustrate the efficiency and accuracy of the method.

2. Formulation and implementation

2.1. Brief introduction to NURBS

NURBS are one of the most common and powerful methods adopted by the computer-aided design (CAD) community to 
represent complex curves, surfaces and volumes. For completeness, we provide hereafter a brief review of NURBS formula-
tion based on [29,28]. A univariate NURBS curve is defined by

C(ξ) =

n∑
i=1

Ni,p(ξ)wi P i

n∑
i=1

Ni,p(ξ)wi

, (1)

where P i are the control points, wi are the weights (wi > 0), and Ni,p are the B-spline basis functions, where p is the 
polynomial degree and n is the number of basis functions (and also number of control points). The polygon formed by P i
is called control polygon (see Fig. 1-a). The basis functions are evaluated at ξ which takes values in the interval of a knot 
vector �. A knot-vector is a set of n + p + 1 non-decreasing real numbers representing coordinates in a parametric space. 
The interval of knot vector is arbitrary, but it is commonly normalized to [0, 1]. A knot vector is said to be open if its first 
and last knot values are repeated p + 1 times as

� = {0, . . . ,0︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξn,1, . . . ,1︸ ︷︷ ︸
p+1

}. (2)

Open knot vectors are often adopted by CAD systems. The interval [ξi, ξi+1) is called a knot span. B-spline basis functions 
are defined recursively as

Ni,0(ξ) =
{

1 ξi ≤ ξ < ξi+1
0 otherwise

, (3)
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Fig. 1. (a–b) A quadratic (p = 2) NURBS curve constructed by seven control points P i (control polygon shown with dashed line), the knot vector � =
{0, 0, 0, 1/4, 1/2, 3/4, 3/4, 1, 1, 1} and its B-spline basis functions Ni,2(ξ) (i = 1 . . . 7). (c–d) A bi-quadratic (p = q = 2) NURBS surface constructed by 6 × 6
control points and one of its basis functions (N3,2(ξ) × N3,2(η)) corresponding to P 3,3. (e) A bi-quadratic/linear (p = q = 2, r = 1) NURBS volume (solid) 
constructed by 4 × 4 × 2 control points.

and

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), (p > 0). (4)

Note that the support of Ni,p is limited to the interval [ξi, ξi+p+1) and Ni,p = 0 outside this interval. In general, Ni,p

is C p−1-continuous when there are no repeated knots in its interval of support and, if a knot has multiplicity k, the basis 
functions are C p−k-continuous for that knot value. Other than their compact support and controllable continuity, the most 
notable properties of B-spline basis functions are their non-negativity (Ni,p(ξ) �= 0), partition of unity (

∑n
i=1 Ni,p(ξ) = 1), 

and linear independence. NURBS curves inherit all of the continuity properties of their bases. A quadratic NURBS curve and 
its corresponding basis functions are depicted in Figs. 1-a and b, respectively. Note that C0-continuity in the curve at P 5
directly results from the discontinuity of its corresponding B-spline basis function N5,2 which is dictated by the multiplicity 
of the underlying knot vector at ξ6 = ξ7 = 3/4. Further, this k = 2 (k = p) multiplicity also requires the curve to interpolate 
the control point at P 5. Similarly, a k = 3 (k = p + 1) multiplicity at the beginning and the end of the knot vector requires 
the curve to (i) interpolate the initial and final control points and (ii) start and end at these points (C−1-continuity). Key 
properties of NURBS curves include their convex hull (NURBS curve lies within the convex hull of its control points), affine 
covariance (the transform of a NURBS curve only needs to be applied to its control points), and variation diminishing 
(a NURBS curve can not cross a line more times than its control polygon).

Higher-order NURBS geometries also inherit most of the properties of the NURBS curves. A NURBS surface is defined by 
taking two knot vectors and a bidirectional (n × m) control net P i, j through

S(ξ,η) =
n∑

i=1

m∑
j=1

R(p,q)

i, j (ξ,η)P i, j, (5)

where R(p,q)

i, j basis is a tensor product between two sets of pth and qth-order piecewise B-spline basis functions

R(p,q)

i, j (ξ,η) = Ni,p(ξ)N j,q(η)wi, j
n∑

i1=1

m∑
j1=1

Ni1,p(ξ)N j1,q(η)wi1, j1

. (6)
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Some of the properties of R(p,q)

i, j are their local support [ξi, ξi+p+1) × [η j, η j+q+1), non-negativity and the partition of 
unity 

∑n
i=1

∑m
j=1 R p,q

i, j (ξ, η) = 1 for all (ξ, η) ∈ [0, 1] × [0, 1]. A sample bi-quadratic NURBS surface and one of its basis 
functions are shown in Figs. 1-c and d, respectively. A NURBS volume (or solid) is a subset of R3 which includes surfaces 
and internal points of an object. A NURBS volume is a trivariate parametric representation constructed from a tridirectional 
mesh (n × m × l) of control points P i, j,k and three knot vectors by

V (ξ,η, ζ ) =
n∑

i=1

m∑
j=1

l∑
k=1

R(p,q,r)
i, j,k (ξ,η, ζ )P i, j,k, (7)

where the R(p,q,r)
i, j,k basis function is again defined by taking the tensor product between three sets of pth, qth and rth-order 

piecewise B-spline basis functions defined by

R(p,q,r)
i, j,k (ξ,η, ζ ) = Ni,p(ξ)N j,q(η)Nk,r(ζ )wi, j,k

n∑
i1=1

m∑
j1=1

l∑
k1=1

Ni1,p(ξ)N j1,q(η)Nk1,r(ζ )wi1, j1,k1

. (8)

Again, R(p,q,r)
i, j,k preserves all of the properties of univariate and bivariate B-spline basis functions as well as compact 

support [ξi, ξi+p+1) × [η j, η j+q+1) × [ζk, ζk+r+1), non-negativity, and partition of unity. In the interior of the cuboid 
[ξi, ξi+1) × [η j, η j+1) × [ζk, ζk+1) for a knot value (ξ0, η0, ζ0) with multiplicity k1, k2, and k3, respectively, all partial deriva-

tives of R(p,q,r)
i, j,k exist up to order (p − k1, q − k2, r − k3). A sample bi-quadratic/linear (p = q = 2, r = 1) NURBS volume is 

shown in Fig. 1-e. One of the properties of NURBS is their flexibility to represent singular features of a geometry. For in-
stance, geometric singularities like sharp corners can be easily represented by NURBS. For example, the sharp corner in the 
geometry shown in Fig. 1-e is created by superposing a number of control points. These properties of NURBS are very useful 
in representing complex geometric features. In the current work, NURBS surfaces are used to represent material interfaces 
and NURBS volumes are used to describe subspaces of an element traversed by material interfaces.

2.2. NIGFEM formulation and enrichment functions

To present the NIGFEM formulation, we consider its application to linear elastostatics problems. Let us consider a 3D 

structural problem with domain � = N�∪
i=1

�i ⊂ R
3, 

N�∩
i=1

�i = ∅ with closure �̄ is bounded by ∂� = �̄−� with outward normal 

vector n, where N� is the number of subdomains �i , i = 1, 2, . . . , N� . The boundary ∂� is composed of two complementary 
subsets �t and �u , i.e., ∂� = �u ∪�t and �u ∩�t = ∅, over which traction t̄ and displacement ū are prescribed. We assume 

that the material interfaces are smooth and are defined by S = N S∪
i=1

Si ⊂ R
2 and satisfy 

N S∩
i=1

Si = ∅, where N S is the number of 

interfaces. The normal vector on each material interface Si is denoted by ni .
The strong formulation of a elastostatics field can be expressed as

∇ · σ + b = 0 in �, (9)

σ = C : ε, (10)

ε = ∇su, (11)

where u is displacement, σ and ε respectively denote the stress and strain tensors, C is the elasticity tensor, b is the body 
force vector, and ∇s is the symmetric gradient operator. The essential and natural boundary conditions can be formulated 
as

u = ū on �u, (12)

σ · n = t̄ on �t, (13)

where ū and t̄ are prescribed displacements and tractions, respectively. Interface conditions take the form:

�σ · ni � = 0 on Si (i = 1, 2, , . . . , N S) , (14)

with �.� denoting the jump symbol that indicates discontinuity of a physical quantity.
To express the weak form of the governing equation, let S = H1 (�) be the standard Sobolev space and V = H1

0 (�) be 
the standard Sobolev space of functions that vanish on �u . The weak form statement is then written as

Find u ∈ S such that∫
�

∇w : σ (u)d� =
∫
�

w · bd� +
∫
�t

w · t̄d�, ∀w ∈ V. (15)
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Now for a discrete system, let Sh ⊂ S and Vh ⊂ V be considered as finite dimensional subspaces, which are used as the 
approximation trial and test spaces. The weak form of this discrete problem can be written as

Find uh ∈ Sh such that∫
�h

∇wh : σ (uh)d� =
∫
�h

wh · bd� +
∫

�th

wh · t̄d�, ∀wh ∈ Vh. (16)

The finite element solution to this weak statement is obtained by discretizing the domain into Ne finite elements (� ∼=
�h =

Ne⋃
i=1

�i
e) and approximate the unknown displacement field in each element as

uh(x) =
ne∑

i=1

Ni(x)ui, (17)

where Ni(x) are the basis functions, ne is the number of nodes in each element and ui denote the vector of nodal values. 
The NIGFEM utilizes a non-conforming mesh for which some of the elements are traversed by material interfaces. For 
elements not traversed by material interfaces, the NIGFEM approximation is given by (17). However, to capture the weak 
discontinuity (C0) of the solution along material interfaces, the solution field in each element intersected by an interface is 
locally augmented by a series of extra degrees of freedom α jk and enrichment functions ψ jk(x) as

uh(x) =
ne∑

i=1

Ni(x)ui +
nψ j∑
j=1

nψk∑
k=1

ψ jk(x)α jk, (18)

in which nψ j and nψk are the number of enrichment functions along two parametric directions specifying a NURBS surface 
that represent the material interface. In the NIGFEM, Lagrangian shape functions Ni(x) are used for the standard finite 
element approximation to the solution field, and NURBS are used to construct the enrichment functions ψ jk(x). While the 
enrichment degrees of freedom α jk are added to the nodes of the non-conforming mesh in conventional G/XFEM, the α jk
are introduced along the material interface in the NIGFEM. Using NURBS as a basis for enrichment allows the NIGFEM to 
capture highly complex material interfaces, with the number of enrichment functions (nψ = nψ j × nψk ) dictated by the level 
of complexity of the material interfaces.

Let us represent a material interface by a quadratic NURBS surface S(ξ, η). To construct the enrichment functions, we 
first interact S(ξ, η) with the domain �h (shown in Fig. 2-a), which is discretized by a structured mesh composed of tri-
linear hexahedral (brick) elements �h

i , i = 1 . . .m. Without loss of generality, let us assume that the material interface is a 
straight cylinder that is normal to the plane of the non-conforming mesh, and let us consider more complex configurations 
later. Fig. 2-b shows possible cases in which the material interface splits an intersecting element under the mentioned as-
sumptions. Let us represent by Se a portion of material interface residing inside an element. The portion of a NURBS surface 
residing in the element (Se) is in general not a NURBS surface itself. Therefore, we must first find a NURBS approximation 
to Se , which we denote Sh

e . There are different approaches to obtain Sh
e , including global and local fitting approaches and 

boundary-based approaches [28]. Bilinearly blended Coons surface is one of the boundary-based techniques to construct the 
surface Sh

e requiring only information about the boundaries of Se [28]. To construct a Coons surface, we label boundaries 
of Se with curves C e

i (i = 1 . . . 4 in the current configuration), as shown in Fig. 2-c. Each C e
i is created by intersecting S

with the faces of the element. Since S is a bi-quadratic surface, C e
i are generally at least quadratic. We find these quadratic 

NURBS curves using a global interpolation technique described in [28]. With the aid of the NURBS curves C e
i , we now con-

struct a Coons surface Sh
e in each intersected element (as an approximation to Se) such that S ∼= Sh = ⋃mi

i=1 Sh
i and mi is 

the number of elements traversed by the material interface(s). Sh
e is referred to hereafter as sub-interface. It should be noted 

that the order of the Coons surface is dictated by the order of its boundary curves. We use quadratic boundary curves, so 
the obtained Coons surface is bi-quadratic. In the next step, we use control points and knot vectors of these sub-interfaces 
and some of the topological information of �e including its nodal coordinates to define the NURBS representation of the 
volumes �e

i (Fig. 2-d) by

�e
i (ξ,η, ζ ) =

n∑
j=1

m∑
k=1

2∑
l=1

R(p,q,r)
j,k,l (ξ,η, ζ )Pi

j,k,l, i = 1,2 . (19)

Let us refer to �e
i as sub-domain in the sequel. We take n and m control points in the parametric ξ - and η-directions of 

the sub-domain, which are selected parallel to the sub-interface parametric directions. In the normal direction (ζ -direction), 
we take only two control points, the minimum number needed for a linear interpolation in this direction. Similarly, we 
choose in this work the order of �e

i to be p = q = 2 in the ξ - and η-direction and r = 1 in the ζ -direction. It should be 
noted that the order of the approximation for the basis functions is arbitrary in the NIGFEM, and, for a highly curvilinear 
interface, a higher-order basis may enhance the precision of the approximation. Similarly, the number of control points n
(≥ p + 1) and m (≥ q + 1) can vary depending on the level of complexity of Se . To reproduce the sharp edges of �e , 
i
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Fig. 2. (a) NIGFEM domain with a cylindrical interface S(ξ, η) discretized by a structured mesh of trilinear hexahedral elements; (b) two possible geometric 
configurations for elements traversed by the material interface; (c–d) Reconstruction of NURBS surface Sh

e from the computed boundary curves Ce
i and 

NURBS volume �e
i , i = 1, 2 corresponding to the intersected element.

we can change the multiplicity of knot values in knot-vectors of �e
i . Another approach is to adopt a normal knot vector 

without multiplicities and use superposing control points to create sharp corners/edges. Here, we take the latter approach 
to avoid changing the continuity level of the NURBS basis functions of �e

i . Therefore, we choose n = m = 4 and knot vectors 
�ξ,η = {0, 0, 0, 0.5, 1, 1, 1} for the parametric ξ - and η-directions. Since two control points and a linear interpolation are 
selected for the ζ -direction, we choose �ζ = {0, 0, 1, 1} as knot vector associated with this direction. Let us label the basis 
functions corresponding to Sh

e ∩ �e
i by (R j,k,l=1)�e

1
and (R j,k,l=1)�e

2
. From the combination of these basis functions, we 

define

ψe
jk(ξ,η, ζ ) =

⎧⎨
⎩

(R j,k,l=1)�e
1

(ξ,η, ζ ) ∈ �e
1,

(R j,k,l=1)�e
2

(ξ,η, ζ ) ∈ �e
2,

0 otherwise.

(20)

Note that ψe
jk ( j, k = 1, 2, . . . , nψ j = nψk = 4) are non-zero only in �e and vanish everywhere else. Furthermore, these func-

tions are C0-continuous along material interface Sh
e because (R j,k,1)�e

1
= (R j,k,1)�e

2
= 1 on Sh

e . Therefore, the displacement 
field uh is also C0-continuous along these material interfaces. In the NIGFEM scheme, we take ψe

jk as enrichment to the 
finite element approximation space to capture gradient discontinuities existing along material interfaces. This is a natural 
choice because (i) these enrichment functions accurately describe the geometry of the interface, and (ii) they inherit all 
the needed properties for enrichment from the NURBS space including compact support, differentiability and linear inde-
pendence. In the NIGFEM, we also use �e

i as the integration elements because (i) they decompose the element space into 
disjoint sub-domain spaces sharing the material interface and (ii) the NURBS automatically provide a map between these 
complex sub-domain spaces and a simple parametric space.

For more clarification, let us further explain the procedure of constructing the NURBS representation of the volume 
sub-domain �e

i , i = 1, 2 for an intersecting element as shown in Fig. 2-d. The sixteen control points of sub-interface Sh
e , 

which reside in the element space, are labeled by P0, j , j = 1, . . ., 16. For sub-domain �e
1, we also take sixteen dummy 

control points along the edge of �e parallel to the sub-interface Sh
e , P1, j , j = 1, . . ., 16. By superposing several control 
1
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Fig. 3. (a) Five possible geometric configurations for an element traversed by a material interface. (b–c) Construction of the sub-interface Sh
e and volumetric 

NURBS representation of the sub-domains �e
i for geometric configurations (iii)–(v).

points, the sharp edge of the element is reproduced successfully. The superposed control points of P1,1..4 and P1,13..16 are 
coincident with the two vertices of the element � and the control points in-between are selected uniformly along the edge 
that connects these vertices. We call these control points dummy because no dof is associated with them, and they are just 
used to construct NURBS volumes. With the selected control points Pi, j , i = 0, 1, j = 1, . . ., 16 and the knot vectors �ξ,η,ζ , 
we can create a 3D NURBS volume for �e

1. We take the same approach to construct a 3D NURBS volume for �e
2 using the 

control points Pi, j , i = 0, 2, j = 1, . . ., 16 with the same knot vectors �ξ,η,ζ .
Fig. 3-a shows more complex geometric combinations arising from interacting a material interface with a hexahedral 

element. In cases (i) and (ii), a four-sided Sh
e is needed, which can be readily constructed by Coons method as described 

earlier. For case (iii), a three-sided sub-interface needs to be constructed. In this case, we again use Coons method and, 
for the missing boundary curve, we define a NURBS curve that degenerates into a single point as shown in Fig. 3-b (iii). 
Fig. 3-c (iii) shows the associated NURBS sub-domains. The sharp corners and edges are again created by superposing several 
control points. Figs. 3-a (iv) and (v) show the two remaining combinations. In these cases, we create the sub-interfaces S h

e
by combining three- and four-sided Coons surfaces as respectively shown in Figs. 3-b (iv) and (v). Because of the discrete 
nature of Sh

e in these situations, we divide the element space into four disjoint sub-domains, as shown in Fig. 3-c (v), such 
that �e = ∪4

i=1�
e
i .

For these complex cases, we again select n = m = 4 control points in the ξ and η-directions and l = 2 control points 
in ζ -direction. The order of sub-domains are also selected to be p = q = 2, r = 1. Similarly, the enrichment functions are 
also defined based on (20). The five geometric combinations shown in Fig. 3-a are the basic combinations accounted for 
in the NIGFEM. In all these cases, it is assumed that an interface cuts an element edge at most once and each element is 
traversed by at most one material interface. These assumptions are valid for smooth material interfaces with a reasonable 
level of curvature. It should be noted that, depending on the level of complexity of the material interface, other geometric 
combinations are possible. For instance, highly-curved material interfaces can cut an element edge more than once, or an 
element can be traversed by more than one material interface. In these situations, we use a local octree refinement to 
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resolve the situation into one the cases (i)–(v) shown in Fig. 3-a (see also the discussion on hierarchical refinement in 
Section 2.4).

2.3. Finite element formulation

The finite element approximation for 3D linear elastostatic problems involves solving the linear system of equations

KU = F, (21)

where K denotes global stiffness matrix, U is the vector of unknown nodal displacements, and F is the vector of global 
nodal forces. The global stiffness matrix is assembled as

K =
Ne

A
i=1

(Ke)i, (22)

where A is the assembly operator, Ne is number of elements, and (Ke)i is the local stiffness matrix for element i,

Ke =
∫
�e

B
T (x)C(x)B(x)d�, (23)

with C(x) is the constitutive matrix at material point x, and

B = [
BN(x) Bψ(x)

]
. (24)

In (24), BN (x) and Bψ(x) are given by

BN(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1
∂x 0 0 ∂N2

∂x 0 0 . . .
∂Nne
∂x 0 0

0 ∂N1
∂ y 0 0 ∂N2

∂ y 0 . . . 0 ∂Nne
∂ y 0

0 0 ∂N1
∂z 0 0 ∂N2

∂z . . . 0 0 ∂Nne
∂z

∂N1
∂x

∂N1
∂ y 0 ∂N2

∂x
∂N2
∂ y 0 . . .

∂Nne
∂x

∂Nne
∂ y 0

0 ∂N1
∂ y

∂N1
∂z 0 ∂N2

∂ y
∂N2
∂z . . . 0 ∂Nne

∂ y
∂Nne
∂z

∂N1
∂x 0 ∂N1

∂z
∂N2
∂x 0 ∂N2

∂z . . .
∂Nne
∂x 0 ∂Nne

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bψ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ψ11
∂x 0 0 ∂ψ12

∂x 0 0 . . .
∂ψnψ j

nψk
∂x 0 0

0 ∂ψ11
∂ y 0 0 ∂ψ12

∂ y 0 . . . 0
∂ψnψ j

nψk
∂ y 0

0 0 ∂ψ11
∂z 0 0 ∂ψ12

∂z . . . 0 0
∂ψnψ j

nψk
∂z

∂ψ11
∂x

∂ψ11
∂ y 0 ∂ψ12

∂x
∂ψ12
∂ y 0 . . .

∂ψnψ j
nψk

∂x

∂ψnψ j
nψk

∂ y 0

0 ∂ψ11
∂ y

∂ψ11
∂z 0 ∂ψ12

∂ y
∂ψ12
∂z . . . 0

∂ψnψ j
nψk

∂ y

∂ψnψ j
nψk

∂z

∂ψ11
∂x 0 ∂ψ11

∂z
∂ψ12
∂x 0 ∂ψ12

∂z . . .
∂ψnψ j

nψk
∂x 0

∂ψnψ j
nψk

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

By substituting (24) into (23), we obtain

Ke =
[

Ke
uu Ke

uα

Ke
αu Ke

αα

]
, (26)

where

Ke
uu =

ms∑
i=1

∫
�e

i

BT
N(x)C(x)BN (x)d�,

Ke
uα =

ms∑
i=1

∫
�e

i

BT
N(x)C(x)Bψ(x)d�,

Ke
αu =

ms∑
i=1

∫
�e

BT
ψ(x)C(x)BN (x)d�,
i
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Fig. 4. Mapping used to evaluate the enriched shape function. First, the master element is mapped into a non-vanishing knot-span of the parametric space, 
and then is mapped into the integration element in physical domain.

Ke
αα =

ms∑
i=1

∫
�e

i

BT
ψ(x)C(x)Bψ(x)d�, (27)

with ms denoting the number of subdomains in an enriched element.
These relations hold for elements that are traversed by a material interface. For all other elements, Bψ = 0. Similarly, we 

assemble the global nodal force vector from element-level contributions Fe ,

Fe =
∫
�e

N
T (x)b(x)d� +

∫
�e∩�t

N
T (x)t̄(x)d� (28)

where b and t̄ are the body force and applied traction vectors, and N is the shape and enrichment function vector,

N = [
N(x) �(x)

]
. (29)

Substituting (29) into (28) gives

Fe =
[

Fe
u

Fe
α

]
, (30)

where

Fe
u =

ms∑
i=1

[∫
�e

i

NT (x)b(x)d� +
∫

�e
i ∩�t

NT (x)t̄(x)d�

]
,

Fe
α =

ms∑
i=1

[∫
�e

i

�T (x)b(x)d� +
∫

�e
i ∩�t

�T (x)t̄(x)d�

]
. (31)

Again, in (31), Fe
α �= 0 only for elements traversed by material interface. For numerical integration purpose, in (27) and 

(31), we use the element sub-domains as integration elements. Therefore, m = 2 for cases (i)–(iii) and m = 4 for cases 
(iv)–(v) shown in Fig. 3-a. This way, for each �e

i , we use the map between the NURBS parametric space and the physical 
space. Subsequently, we use the span-wise mapping scheme described in [26] to compute the integrals appearing in (27)
and (31). In this approach, the NURBS volumes constructed in an intersected element are directly used to perform the 
numerical integration of the weak form. To better understand the integration process, the mapping for an enriched element 
of case (ii) in Fig. 3-a is illustrated in Fig. 4. As apparent there, the integrals are pulled back, first onto the parametric space 
�̂ and then each non-vanishing knot-span of each NURBS volume in parametric space �̂ onto a bi-unit master element �̃. 
We perform these integrations by Gaussian quadrature using a classical change of variables formulation.
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Fig. 5. (a) A 2D structured mesh highlighting elements crossed by more than one material interface. (b) A hierarchically refined mesh suggested the same 
problem featuring hanging nodes. (c) The octree scheme used to refine hexahedral elements used in the 3D NIGFEM to treat elements with more than one 
embedded material interface. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

2.4. Hierarchical mesh refinement

The geometric configurations illustrated in Fig. 3-a are derived based on the assumption that every enriched element 
is only traversed by a single material interface. Depending on the density of the structured nonconforming mesh, and the 
number and maximum curvature level of the material interfaces used for a NIGFEM analysis, there can be cases in which 
some of the elements in the mesh contain more than one material interface. For these elements, we employ a hierarchi-
cal local mesh refinement scheme, and recursively decompose some of the elements to resolve one material interface per 
element condition. The adopted hierarchical mesh refinement scheme leads to irregular meshes with hanging nodes. Uti-
lization of irregular meshes with hanging nodes is also reported in other G/XFEM studies [36–38] generally to resolve steep 
gradients and enhance the precision of FE approximation locally.

In this section, the treatment of irregular meshes and hanging nodes used in the NIGFEM is briefly described. A more 
detailed discussion about different types of hanging nodes and their treatment in G/XFEM analyses can be found in [38]. 
In general, there are two approaches in the analysis of hanging nodes based on whether or not additional degrees of 
freedom are introduced to the problem. In the first approach, the shape functions of the elements containing hanging 
nodes are modified to provide a conforming approximation within the boundaries of elements that contain hanging nodes. 
The conforming shape functions can be defined readily using the approach described elsewhere [39]. A drawback for this 
method is the need for domain decomposition techniques during numerical integration as altered shape functions are only 
C0-continuous at their support. In the second approach, often referred to as constrained approximation, hanging nodes are 
first treated as regular nodes, allowing for regular integration and assembly procedures. A set of algebraic equations is then 
used to constrain the DOFs associated to the hanging nodes to the regular DOFs. In the present NIGFEM study, we use the 
latter approach to treat hanging nodes arising from adopted hierarchical local mesh refinement scheme.

The adopted hierarchical mesh refinement scheme operates on 3D meshes. However, for illustration purpose, it is easier 
to show the method in a 2D setting. Fig. 5-a illustrates a 2D example in which the highlighted elements contain more 
than one material interface. Therefore, we need to perform a local mesh refinement to satisfy the one material interface 
per element assumption. Here, refinement to three highlighted elements results in introducing hanging nodes H1 to H4
that are shared between two enriched elements (Fig. 5-a). For these hanging nodes, proper enforcement of the constraints 
that ensure C0-continuity across enriched elements is not trivial. To avoid this situation, we continue the refinement in the 
vicinity of these elements to make sure each hanging node is only shared between an enriched element and a standard one, 
as shown in Fig. 5-b, where red dots denote the hanging nodes. After the required number of refinement levels, we finally 
obtain a mesh for which all of the enriched elements fall within one of the cases (i)–(v) shown in Fig. 3-a. In NIGFEM, the 
elements that require refinement are decomposed into eight equal sized hexahedral element using an octree scheme shown 
in Fig. 5-c.

For an irregular mesh of this type, the irregularity index k denotes the maximum difference of refinement levels between 
adjacent elements in the mesh. Here, a 1-irregular mesh (k = 1) is enough to satisfy the single interface per enriched element 
condition, but sometimes a higher level refinement (k > 1) is needed. A higher refinement level is also suggested for very 
close interfaces because steep gradients are usually expected there. As shown in Fig. 5-c, two types of hanging nodes 
are possible. In this example ue

c is the edge type and u f
c is the face type hanging nodes and ui (i = 1 · · ·4) are regular 

nodes used to constraint these hanging nodes. For a refined mesh with nodal set I , Ie
c ⊂ I and I f

c ⊂ I are two subsets 
(I f

c ∪ Ie
c = Ic ⊂ I) that contain the edge and face type hanging nodes. The degrees of freedom associated to these hanging 

nodes are constrained to their neighboring corner nodes by

uc =
{

1
2 ui + 1

2 u j, i, j ∈ Q e
c , c ∈ Ie

c
1 u + 1 u + 1 u + 1 u , i, j,k, l ∈ Q f

, c ∈ I f (32)

4 i 4 j 4 k 4 l c c
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Fig. 6. (a) Domain geometry and boundary conditions used in the patch test. (b) Exact displacements along line OF captured by NIGFEM patch test.

where Q e
c and Q f

c are the subsets of the nodes which share the edge/face with the hanging node uc , respectively. To 
enforce these algebraic constraints to the FE system of equations, we adopt the connectivity matrix method. Following [38], 
for each regular node a, πa is a zero vector with 1 in the position a. For hanging nodes a ∈ Ic , πa is defined as

πa =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0, . . . , 1/2︸︷︷︸

i

, . . . , 1/2︸︷︷︸
j

, . . . ,0
]T

i, j ∈ Q e
a ,a ∈ Ie

c ,

[
0, . . . , 1/4︸︷︷︸

i

, . . . , 1/4︸︷︷︸
j

, . . . , 1/4︸︷︷︸
k

, . . . , 1/4︸︷︷︸
l

, . . . ,0
]T

i, j,k, l ∈ Q f
a ,a ∈ I f

c .
(33)

We assemble πa for all nodes into the square matrix

π∗ = {π1, . . . ,πn}, (34)

where n is the total number of nodes including regular and hanging nodes. We then eliminate all of zero-valued rows 
(belonging to hanging nodes) from π∗ to obtain the global connectivity matrix π , thereby reducing (21) to

π ·K · π T ·Ur = π · F, (35)

where Ur is the displacement vector for all regular nodes. The final solution vector which contains both regular and hanging 
node solutions is then obtained by

U = π T ·Ur . (36)

3. Convergence and accuracy

3.1. Patch test

We start this convergence study of the NIGFEM by performing a patch test. The domain and boundary conditions for this 
first example are presented in Fig. 6-a. The domain consists of a cubic matrix with a side length L containing a spherical 
inclusion with the radius a (a/L = 0.23). The domain is pinned at corner O and subjected to a uniform traction τ0, normal 
to face AB E F , while symmetry boundary conditions are applied to faces O AC B , O C DG to ensure a uniaxial state of stress 
in the x-direction and to avoid rigid body motion. Assuming the same elastic material properties, E and ν , for the matrix 
and the inclusion, the exact solution is

(u, v, w) =
(τ0

E
x,−ντ0

E
y,−ντ0

E
z
)

, (37)

which, as shown in Fig. 6-b, is reproduced exactly by the NIGFEM.

3.2. Convergence

To investigate the convergence and accuracy of the NIGFEM, the displacement and stress fields around a spherical in-
clusion (of stiffness E2 and Poisson’s ratio ν2) embedded in an infinite domain (with properties E1 and ν1) subject to a 
far-field uniaxial state of stress σ0 are computed. In this problem, the NIGFEM solution is compared against standard FE 
solution. The errors are calculated by comparing NIGFEM and FE approximation with an analytical solution [40] using the 
L2-norm of the error for the displacement and stress fields defined by
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‖eu‖L2 =
[ ∫

�

(u − uh)T (u − uh)d�

]1/2

, (38)

‖eσ ‖L2 =
[ ∫

�

(σ − σ h)T (σ − σ h)d�

]1/2

, (39)

where u and σ are respectively the exact displacement and stress fields and uh and σ h are the corresponding NIGFEM 
solutions. We also study the convergence of the NIGFEM in the enriched elements by computing the L2-norm of the error 
for the displacement field defined over the material interface by

‖euS ‖L2 =
[ ∫

�S

(u − uh)T (u − uh)d�

]1/2

, (40)

‖eσS ‖L2 =
[ ∫

�S+

(σ − σ h)T (σ − σ h)d�

]1/2

, (41)

where �S and �S+ is the material interface, i.e., the surface of the spherical inclusion, and its limit approaching from 
the outside of the inclusion. Fig. 7-a shows the problem geometry, which consists of a cube of side length L containing a 
spherical inclusion with radius a (a/L = 0.23). The exact solution for the displacement and stress fields is obtained from 
the classical Goodier solution [40]. In the NIGFEM model, the spherical inclusion is represented by a second-order NURBS 
surface and the cubic domain is discretized into a structured mesh of hexahedral elements. The FE meshes used for the 
study are composed from unstructured trilinear hexahedral elements. For both NIGFEM and FE models, traction boundary 
conditions corresponding to the exact solution are applied to the faces of the domain to account for finite size effects. The 
center of the domain is pinned and the center of each face of the cube is limited to move along the normal direction using 
a roller support to prevent rigid-body motion.

Fig. 7-b shows rate of convergence of the L2-norm of error for the displacements with respect to the mesh size (h) 
obtained by the NIGFEM and FEM. As apparent there, the NIGFEM solution preserves the optimal rate of convergence and 
provides a more accurate solution compared to FE. A supper-convergent patch recovery technique [41] is used to enhance 
the approximation quality of the gradient field for both FE and NIGFEM solutions. Fig. 7-c compares the h-dependence of 
the convergence rate for the L2-norm of error for the stresses in the entire domain. It is again observed that the NIGFEM 
solution is more accurate for the gradient field and it preserves the optimal rate of convergence similar to standard FEM.

Figs. 7-d and e compare the quality of the NIGFEM and FEM solutions obtained along the material interface by showing 
the convergence of the L2-norm of the error on the displacement and stress solutions computed along the material interface. 
The L2-norm of error for the displacements along material interfaces shows that NIGFEM provides a more accurate solution 
along the material interface for all levels of discretization. A similar comparison of the L2-norm of error for the stresses 
along the material interface, however, shows that the NIGFEM solution for stresses is only more accurate for coarse meshes. 
By increasing the level of refinement, the NIGFEM shows a sub-optimal rate of convergence, and for very fine meshes 
NIGFEM solution for stress starts to lose its accuracy. This loss in the accuracy for the finer meshes is characteristic of 
ill-conditioned enriched elements: as also observed in similar studies [42–45], in elements where the material interface 
passes very closely to one the corners of the enriched element, the condition number of the local stiffness matrix increases 
substantially. As the level of refinement increases, the probability of having these ill-conditioned enriched elements increases 
and numerical issues associated with these stiff enriched-elements hinders the rate of convergence of the gradient field 
approximation. Meanwhile, volumetric measures still show an optimal rate of convergence for the stress solution because 
the fraction of enriched elements decreases as the refinement level increase.

Figs. 8-a and b illustrate the variation of the displacement components (uh, vh, wh) and stress (σ h
zz, σ h

e ) along the line 
A–B shown in the inset for L/h = 12 and E2/E1 = 10−6. It can be observed that, for this relatively coarse discretization, 
the NIGFEM solution is quite accurate. The accuracy of the NIGFEM solution for this relatively coarse non-conforming mesh 
is attributed to the absence of geometric errors in the model. Figs. 8-c and d show contour plots of the components of 
displacement wh and stress σ h

zz . As apparent in these figures, the geometry of inclusion is preserved by the non-conforming 
mesh. These figures also show that NURBS-based enrichment provides a higher-order approximation for the solution and its 
gradient in the vicinity of material interfaces.

With regards to the performance of the NIGFEM, the method involves two additional costs compared to traditional FEM: 
the construction of the enriched elements and the higher-order integration scheme. Based on our experience, the cost 
associated with constructing enriched elements is much less than the time required to make a conformal mesh, especially 
for complex geometries. As far as the overhead of higher-order integration scheme is concerned, we note that, since it is 
only associated with the enrichment elements, the higher-order integration only represents a small fraction of the total 
solution cost.

Compared with a regular element, an enriched element poses an extra computational cost to the analysis at the inte-
gration step. The extra computational cost associated with the numerical integration of an enriched element for elements 
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Fig. 7. (a) Domain geometry and boundary conditions used in the convergence study. Convergence rate in L2-norm of the error for the displacement shown 
in (b), and stress fields shown in (c) obtained in the entire domain, and computed along the material interface shown in (d) and (e) with respect to mesh 
size (h) for the stiffness ratios (E2/E1 = 10−6).
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Fig. 8. Comparison between the exact (solid curve) and NIGFEM (symbols) solutions for displacements (a), stress component σzz and effective stress σe (b) 
for E2/E1 = 10−6 along the line AB shown in the inset. (c–d) NIGFEM solution for displacement component wh and stress component σ h

zz .

decomposed into two sub-domains (case (i), (ii), and (iii) in Fig. 3-a) and four sub-domains (case (iv) and (v) in Fig. 3-a) 
with the selected knot vectors is approximately 4- and 8-times larger than that of a regular element, respectively. However, 
it is worth noting that usually only a small fraction of elements require enrichment, and with finer meshes this fraction 
tends to decrease quickly (for instance, Nenriched/Ne ∼ N−1/3

e for the problem shown in Fig. 7).

4. Applications

A key application of the NIGFEM is the mesoscale analysis of materials with complex internal microstructures. In this 
section, the NIGFEM is used to study a series of representative structural problems involving composite media. The do-
main adopted in these studies involves a cube of side length L containing inclusions or cavities of various shapes. All the 
microstructures shown are represented with second-order NURBS surfaces.

Fig. 9 shows the domain geometry and boundary conditions for the first problem. A displacement δ is applied to the 
right face of the domain. Symmetry boundary conditions are used for the left, bottom and front faces and the front lower-
left corner is pinned. All the other faces are traction free. Fig. 9-b illustrates the internal microstructure of the domain, 
which consists of a porous material composed of randomly distributed spherical cavities with varying diameter. The elastic 
properties are chosen as E = 2.4 GPa and ν = 0.34. About 200 spherical cavities are randomly placed in this domain to 
represent the material microstructure.

Fig. 9-b also illustrates the structured, non-conforming mesh composed of 20 hexahedral elements in each direction. 
A one-step hierarchical refinement is introduced to resolve the condition of one material interface per element. For the 
selected microstructure, about 19% of the elements are refined based on the octree scheme described earlier, and the model 
includes 18,892 elements, 15,017 regular nodes, 11,680 hanging nodes, and 66,562 enrichment dofs after the one-step 
hierarchical refinement.
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Fig. 9. (a) Domain geometry and boundary conditions for the first application problem. (b) Internal microstructure and mesh. (c–d) Contour plots for the 
displacement component uh and equivalent von Mises stress σe obtained by NIGFEM. (e–f) NIGFEM solution for the displacements (uh, vh, wh ) and stress 
components (σ11, σ22 and σ33) along line A–B highlighted in the insets.

Figs. 9-c and d show the solution for the displacement component uh and equivalent von Mises stress σe for this prob-
lem. We observe that, with a relatively coarse mesh, NIGFEM successfully preserves the material interface geometries and 
provides a smooth approximation to the displacement and stress fields. Figs. 9-e and f show the distribution of displace-
ment components and stresses along a diagonal line (highlighted in the inset) which passes through some of the spherical 
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Fig. 10. (a) Domain geometry and boundary conditions used for the rest of application problems. (b–f) Contour plots for the displacement component uh

for different internal microstructures obtained by NIGFEM.

cavities. As apparent there, the NIGFEM captures the sharp variations of the solution fields in the vicinity of the cavities. As 
expected, the NIGFEM solution for stress vanishes when line A–B passes through cavities (denoted by ellipses in Fig. 9-f).

NIGFEM can also be used to capture the displacement and stress fields for heterogeneous materials with more complex 
internal microstructures as shown in the second set of examples presented in Fig. 10. Fig. 10-a shows the geometry and 
boundary conditions of a generic unit cell. A displacement δ0 is applied to the right face of the domain and symmetry 
boundary conditions are used for the bottom and left faces. The remaining faces of the domain are chosen to be traction free. 
The elastic properties are Em = 2.4 GPa and νm = 0.34 for the matrix, and Ei = 72 GPa and νi = 0.22 for the inclusions. For 
each problem, the domain is first discretized with structured mesh of hexahedral elements and then refined automatically 
as needed. It is worth mentioning that the choice of the number of elements (in each direction) for the non-conforming 
mesh dictates the number of refinement levels required in the subsequent solution step. Figs. 10c–f show the distribution 
of displacement component uh obtained for each of these internal microstructures. The flexibility of the NURBS-enrichment 
used in the NIGFEM allows capturing a smooth solution for a variety of internal microstructures as well as fiber-shaped 
reinforcements (Fig. 10-b) and random-shaped particulate inclusions (Figs. 10c–f). For all these geometries, the structured 
NIGFEM mesh is created on the fly and the time needed to preprocess the mesh is only a fraction of the time needed to 
create conforming meshes associated with standard FE analyses.

5. Conclusions

The formulation and implementation of a NURBS-based interface-enriched GFEM method for solving 3D linear elasticity 
problems have been presented. The NIGFEM is well suited for problems with complex internal geometry, where the creation 
of conforming meshes is cumbersome. To capture the solution with non-conforming meshes, the NIGFEM utilizes NURBS 
to augment the finite element approximation space and minimize geometric errors. The use of NURBS in the enrichment 
of the finite element solution in the elements traversed by the material interfaces provides a natural and accurate way 
to capture the geometrical details of the internal microstructure. Convergence studies have shown that the NIGFEM has 
very good precision, and an optimal rate of convergence. The applications presented in the manuscript have illustrated the 
ability and efficiency of the method to simulate the structural response of a wide variety of heterogeneous materials with 
complex-shape inclusions.
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